On the log abundance for compact Kähler threefolds

被引:0
|
作者
Omprokash Das
Wenhao Ou
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
manuscripta mathematica | 2024年 / 173卷
关键词
14E30; 32J17; 32J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show that if (X,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \Delta )$$\end{document} is a log canonical compact Kähler threefold such that KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is nef and the numerical dimension ν(KX+Δ)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (K_X+\Delta )\ne 2$$\end{document}, then KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is semi-ample.
引用
收藏
页码:341 / 404
页数:63
相关论文
共 50 条
  • [21] Stein complements in compact Kähler manifolds
    Hoering, Andreas
    Peternell, Thomas
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2075 - 2111
  • [22] Algebraic deformations of compact Kähler surfaces
    Nicholas Buchdahl
    Mathematische Zeitschrift, 2006, 253 : 453 - 459
  • [23] Intrinsic capacities on compact Kähler manifolds
    Vincent Guedj
    Ahmed Zeriahi
    The Journal of Geometric Analysis, 2005, 15 : 607 - 639
  • [24] Log Fano threefolds and quotients of K3 surfaces
    Zhang, DQ
    GEOMETRY FROM THE PACIFIC RIM, 1997, : 403 - 413
  • [25] Some models for bubbling of (log) Kähler–Einstein metrics
    de Borbon M.
    Spotti C.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (3) : 1037 - 1068
  • [26] Deformations of Almost-Kähler Metrics with Constant Scalar Curvature on Compact Kähler Manifolds
    Jongsu Kim
    Chanyoung Sung
    Annals of Global Analysis and Geometry, 2002, 22 : 49 - 73
  • [27] Equivariant log-concavity and equivariant Kähler packages
    Gui, Tao
    Xiong, Rui
    JOURNAL OF ALGEBRA, 2024, 657 : 379 - 401
  • [28] A theorem of Tits type for compact Kähler manifolds
    De-Qi Zhang
    Inventiones mathematicae, 2009, 176 : 449 - 459
  • [29] A Note on the Moment Map on Compact Kähler Manifolds
    Anna Gori
    Fabio Podestà
    Annals of Global Analysis and Geometry, 2004, 26 : 315 - 318
  • [30] Compact indefinite almost Kähler Einstein manifolds
    Kouei Sekigawa
    Akira Yamada
    Geometriae Dedicata, 2008, 132 : 65 - 79