Killing Fields on Compact Pseudo-Kähler Manifolds

被引:0
|
作者
Andrzej Derdzinski
Ivo Terek
机构
[1] The Ohio State University,Department of Mathematics
来源
关键词
Compact pseudo-Kähler manifold; Killing vector field; Primary 53C50; Secondary 53C56;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a Killing field on a compact pseudo-Kähler ddbar manifold is necessarily (real) holomorphic. Our argument works without the ddbar assumption in real dimension four. The claim about holomorphicity of Killing fields on compact pseudo-Kähler manifolds appears in a 2012 paper by Yamada, and in an appendix we provide a detailed explanation of why we believe that Yamada’s argument is incomplete.
引用
收藏
相关论文
共 50 条
  • [1] Killing Fields on Compact Pseudo-Kähler Manifolds
    Derdzinski, Andrzej
    Terek, Ivo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [2] Pseudo-Kähler Quantization on Flag Manifolds
    Alexander V. Karabegov
    Communications in Mathematical Physics, 1999, 200 : 355 - 379
  • [3] On the structure of nearly pseudo-Kähler manifolds
    Lars Schäfer
    Monatshefte für Mathematik, 2011, 163 : 339 - 371
  • [4] Embedding theorems for quantizable pseudo-Kähler manifolds
    Galasso, Andrea
    Hsiao, Chin-Yu
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024,
  • [5] Complex symplectomorphisms and pseudo-Kähler islands in the quantization of toric manifolds
    William D. Kirwin
    José M. Mourão
    João P. Nunes
    Mathematische Annalen, 2016, 364 : 1 - 28
  • [6] A Pseudo-Kähler Structure on a Nontoral Compact Complex Parallelizable Solvmanifold
    Takumi Yamada
    Geometriae Dedicata, 2005, 112 : 115 - 122
  • [7] Generalized Pseudo-Kähler Structures
    Johann Davidov
    Gueo Grantcharov
    Oleg Mushkarov
    Miroslav Yotov
    Communications in Mathematical Physics, 2011, 304 : 49 - 68
  • [8] Strict deformation quantization on a pseudo-Kähler orbit of a compact Lie group
    A. V. Karabegov
    Functional Analysis and Its Applications, 1998, 32 : 51 - 53
  • [9] Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds
    Diego Conti
    Federico Alberto Rossi
    Romeo Segnan Dalmasso
    Annals of Global Analysis and Geometry, 2023, 63
  • [10] Pseudo-Kähler and hypersymplectic structures on semidirect products
    Conti, Diego
    Gil-Garcia, Alejandro
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2025, 98