On the log abundance for compact Kähler threefolds

被引:0
|
作者
Omprokash Das
Wenhao Ou
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
manuscripta mathematica | 2024年 / 173卷
关键词
14E30; 32J17; 32J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show that if (X,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \Delta )$$\end{document} is a log canonical compact Kähler threefold such that KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is nef and the numerical dimension ν(KX+Δ)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (K_X+\Delta )\ne 2$$\end{document}, then KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is semi-ample.
引用
收藏
页码:341 / 404
页数:63
相关论文
共 50 条
  • [1] On the log abundance for compact Kahler threefolds
    Das, Omprokash
    Ou, Wenhao
    MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 341 - 404
  • [2] Towards a Mori theory on compact Kähler threefolds, II
    Thomas Peternell
    Mathematische Annalen, 1998, 311 : 729 - 764
  • [3] Non-algebraic compact Kähler threefolds admitting endomorphisms
    Andreas Höring
    Thomas Peternell
    Science China Mathematics, 2011, 54
  • [4] Non-algebraic compact Khler threefolds admitting endomorphisms
    HRING Andreas
    PETERNELL Thomas
    ScienceChina(Mathematics), 2011, 54 (08) : 1635 - 1664
  • [5] LOG ABUNDANCE THEOREM FOR THREEFOLDS
    KEEL, S
    MATSUKI, K
    MCKERNAN, J
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (01) : 99 - 119
  • [6] Minimal models for Kähler threefolds
    Andreas Höring
    Thomas Peternell
    Inventiones mathematicae, 2016, 203 : 217 - 264
  • [7] Abundance theorem for semi log canonical threefolds
    Fujino, O
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (06) : 80 - 84
  • [8] Abundance theorem for semi log canonical threefolds
    Fujino, O
    DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) : 513 - 532
  • [9] A Note on Kähler–Ricci Flow on Fano Threefolds
    Minghao Miao
    Gang Tian
    Peking Mathematical Journal, 2025, 8 (1) : 191 - 199
  • [10] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306