On the log abundance for compact Kahler threefolds

被引:1
|
作者
Das, Omprokash [1 ]
Ou, Wenhao [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
THEOREM; SPACES; CONE;
D O I
10.1007/s00229-023-01467-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show that if (X, Delta) is a log canonical compact Kahler threefold such that K-X + Delta is nef and the numerical dimension nu(K-X + Delta) not equal 2, then K-X + Delta is semi-ample.
引用
收藏
页码:341 / 404
页数:64
相关论文
共 50 条
  • [1] On the log abundance for compact Kähler threefolds
    Omprokash Das
    Wenhao Ou
    manuscripta mathematica, 2024, 173 : 341 - 404
  • [2] ABUNDANCE FOR KAHLER THREEFOLDS
    Campana, Frederic
    Hoering, Andreas
    Peternell, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (04): : 971 - 1025
  • [3] LOG ABUNDANCE THEOREM FOR THREEFOLDS
    KEEL, S
    MATSUKI, K
    MCKERNAN, J
    DUKE MATHEMATICAL JOURNAL, 1994, 75 (01) : 99 - 119
  • [4] The fundamental group of compact Kahler threefolds
    Claudon, Benoit
    Horing, Andreas
    Lin, Hsueh-Yung
    GEOMETRY & TOPOLOGY, 2019, 23 (07) : 3233 - 3271
  • [5] Compact Kahler threefolds with small Picard numbers
    Peternell, T
    APPLICATIONS OF ALGEBRAIC GEOMETRY TO CODING THEORY, PHYSICS AND COMPUTATION, 2001, 36 : 271 - 290
  • [6] ON THE COHOMOLOGICAL ACTION OF AUTOMORPHISMS OF COMPACT KAHLER THREEFOLDS
    Lo Bianco, F.
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2019, 147 (03): : 469 - 514
  • [7] Abundance theorem for semi log canonical threefolds
    Fujino, O
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (06) : 80 - 84
  • [8] Towards a Mori theory on compact Kahler threefolds III
    Peternell, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (03): : 339 - 356
  • [9] Abundance theorem for semi log canonical threefolds
    Fujino, O
    DUKE MATHEMATICAL JOURNAL, 2000, 102 (03) : 513 - 532
  • [10] Towards a Mori theory on compact Kahler threefolds, II
    Peternell, T
    MATHEMATISCHE ANNALEN, 1998, 311 (04) : 729 - 764