Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces

被引:0
|
作者
Youfa Li
Shouzhi Yang
Dehui Yuan
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] University of Macau,Department of Mathematics, Faculty of Science and Technology
[3] Shantou University,Department of Mathematics
[4] Hanshan Normal University,Department of Mathematics
来源
Advances in Computational Mathematics | 2013年 / 38卷
关键词
Bessel property; Dual multiframelet; Sobolev space; Isotropic dilation matrix; Symmetry; 42C15; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The dual 2Id-framelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}), H^{-s}(\mathbb{R}^{d})) $\end{document}, s > 0, were introduced by Han and Shen (Constr Approx 29(3):369–406, 2009). In this paper, we systematically study the Bessel property of multiwavelet sequences in Sobolev spaces. The conditions for Bessel multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} take great difference from those for Bessel wavelet sequence in this space. Precisely, the Bessel property of multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} is not only related to multiwavelets themselves but also to the corresponding refinable function vector. We construct a class of Bessel M-refinable function vectors with M being an isotropic dilation matrix, which have high Sobolev smoothness, and of which the mask symbols have high sum rules. Based on the constructed Bessel refinable function vector, an explicit algorithm is given for dual M-multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}),H^{-s}(\mathbb{R}^{d})) $\end{document} with the multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} having high vanishing moments. On the other hand, based on the dual multiframelets, an algorithm for dual M-multiframelets with symmetry is given. In Section 6, we give an example to illustrate the constructing procedures of dual multiframelets.
引用
收藏
页码:491 / 529
页数:38
相关论文
共 50 条
  • [21] HK-Sobolev spaces WSk,p and Bessel potential
    Hazarika, Bipan
    Kalita, Hemanta
    FILOMAT, 2024, 38 (13) : 4441 - 4465
  • [22] Herz-type Sobolev and Bessel potential spaces and their applications
    Lu, SZ
    Yang, DC
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (02): : 113 - 129
  • [23] ULTRA BESSEL SEQUENCES OF SUBSPACES IN HILBERT SPACES
    Abdollahpour, Mohammad Reza
    Shekari, Azam
    Park, Choonkil
    Shin, Dong Yun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (05) : 874 - 882
  • [24] Extensions of Bessel sequences to dual pairs of frames
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (02) : 224 - 233
  • [25] On Derivatives, Riesz Transforms and Sobolev Spaces for Fourier-Bessel expansions
    Langowski, Bartosz
    Nowak, Adam
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
  • [26] Multipliers for p-Bessel Sequences in Banach Spaces
    Rahimi, Asghar
    Balazs, Peter
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 68 (02) : 193 - 205
  • [27] Ultra g-Bessel Sequences in Hilbert Spaces
    Abdollahpour, Mohammad Reza
    Najati, Abbas
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (01): : 87 - 94
  • [28] THE ALGEBRA OF BESSEL SEQUENCES AND MEANS OF FRAMES IN HILBERT SPACES
    Alizadeh, Esmaeil
    Rahimi, Asghar
    Rahmani, Mortaza
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 563 - 574
  • [29] Multipliers for p-Bessel Sequences in Banach Spaces
    Asghar Rahimi
    Peter Balazs
    Integral Equations and Operator Theory, 2010, 68 : 193 - 205
  • [30] CHARACTERIZATION OF P-BESSEL SEQUENCES IN BANACH SPACES
    Khosravi, Amir
    Takhteh, Farkhondeh
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (06): : 77 - 88