Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces

被引:0
|
作者
Youfa Li
Shouzhi Yang
Dehui Yuan
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] University of Macau,Department of Mathematics, Faculty of Science and Technology
[3] Shantou University,Department of Mathematics
[4] Hanshan Normal University,Department of Mathematics
来源
关键词
Bessel property; Dual multiframelet; Sobolev space; Isotropic dilation matrix; Symmetry; 42C15; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The dual 2Id-framelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}), H^{-s}(\mathbb{R}^{d})) $\end{document}, s > 0, were introduced by Han and Shen (Constr Approx 29(3):369–406, 2009). In this paper, we systematically study the Bessel property of multiwavelet sequences in Sobolev spaces. The conditions for Bessel multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} take great difference from those for Bessel wavelet sequence in this space. Precisely, the Bessel property of multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} is not only related to multiwavelets themselves but also to the corresponding refinable function vector. We construct a class of Bessel M-refinable function vectors with M being an isotropic dilation matrix, which have high Sobolev smoothness, and of which the mask symbols have high sum rules. Based on the constructed Bessel refinable function vector, an explicit algorithm is given for dual M-multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}),H^{-s}(\mathbb{R}^{d})) $\end{document} with the multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} having high vanishing moments. On the other hand, based on the dual multiframelets, an algorithm for dual M-multiframelets with symmetry is given. In Section 6, we give an example to illustrate the constructing procedures of dual multiframelets.
引用
收藏
页码:491 / 529
页数:38
相关论文
共 50 条