Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces

被引:0
|
作者
Youfa Li
Shouzhi Yang
Dehui Yuan
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] University of Macau,Department of Mathematics, Faculty of Science and Technology
[3] Shantou University,Department of Mathematics
[4] Hanshan Normal University,Department of Mathematics
来源
Advances in Computational Mathematics | 2013年 / 38卷
关键词
Bessel property; Dual multiframelet; Sobolev space; Isotropic dilation matrix; Symmetry; 42C15; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The dual 2Id-framelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}), H^{-s}(\mathbb{R}^{d})) $\end{document}, s > 0, were introduced by Han and Shen (Constr Approx 29(3):369–406, 2009). In this paper, we systematically study the Bessel property of multiwavelet sequences in Sobolev spaces. The conditions for Bessel multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} take great difference from those for Bessel wavelet sequence in this space. Precisely, the Bessel property of multiwavelet sequence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} is not only related to multiwavelets themselves but also to the corresponding refinable function vector. We construct a class of Bessel M-refinable function vectors with M being an isotropic dilation matrix, which have high Sobolev smoothness, and of which the mask symbols have high sum rules. Based on the constructed Bessel refinable function vector, an explicit algorithm is given for dual M-multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (H^{s}(\mathbb{R}^{d}),H^{-s}(\mathbb{R}^{d})) $\end{document} with the multiframelets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H^{-s}(\mathbb{R}^{d}) $\end{document} having high vanishing moments. On the other hand, based on the dual multiframelets, an algorithm for dual M-multiframelets with symmetry is given. In Section 6, we give an example to illustrate the constructing procedures of dual multiframelets.
引用
收藏
页码:491 / 529
页数:38
相关论文
共 50 条
  • [31] Multipliers of pg-Bessel Sequences in Banach Spaces
    Abdollahpour, Mohammad Reza
    Najati, Abbas
    Gavrut, Pasc
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 1 - 12
  • [32] Sobolev Type Spaces on the Dual of the Laguerre Hypergroup
    Miloud Assal
    M. Mounir Nessibi
    Potential Analysis, 2004, 20 : 85 - 103
  • [33] Sobolev type spaces on the dual of the Laguerre hypergroup
    Assal, M
    Nessibi, MM
    POTENTIAL ANALYSIS, 2004, 20 (01) : 85 - 103
  • [34] GRADIENT YOUNG MEASURES GENERATED BY SEQUENCES IN SOBOLEV SPACES
    KINDERLEHRER, D
    PEDREGAL, P
    JOURNAL OF GEOMETRIC ANALYSIS, 1994, 4 (01) : 59 - 90
  • [35] Hessian determinants as elements of dual Sobolev spaces
    Radice, Teresa
    STUDIA MATHEMATICA, 2014, 224 (02) : 183 - 190
  • [36] g-Riesz dual sequences for g-Bessel sequences
    Osgooei, E.
    Najati, A.
    Faroughi, M. H.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [37] EXTENSION OF BESSEL SEQUENCES TO OBLIQUE DUAL FRAME SEQUENCES AND THE MINIMAL PROJECTION
    Koo, Yoo Young
    Lim, Jae Kun
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 51 - 65
  • [38] BESSEL SEQUENCES WITH FINITE UPPER DENSITY IN DE BRANGES SPACES
    Belov, Yu.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (04) : 599 - 607
  • [39] A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces
    Jian-Ping Zhang
    Yun-Zhang Li
    Journal of Inequalities and Applications, 2016
  • [40] Characterization of nonhomogeneous dual wavelet frames in Sobolev spaces
    Zhang, Jian-Ping
    Chang, Qiang-Qiang
    SCIENCEASIA, 2022, 48 (01): : 101 - 106