On Derivatives, Riesz Transforms and Sobolev Spaces for Fourier-Bessel expansions

被引:0
|
作者
Langowski, Bartosz [1 ,2 ]
Nowak, Adam [3 ]
机构
[1] Indiana Univ, Dept Math, 831 East 3rd St, Bloomington, IN 47405 USA
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-656 Warsaw, Poland
关键词
Fourier-Bessel expansions; Derivative; Riesz transform; Sobolev space; MEAN CONVERGENCE; SHARP HEAT; JACOBI; OPERATORS; LAGUERRE; TRANSPLANTATION; ORDER; INEQUALITIES; CONJUGACY; THEOREMS;
D O I
10.1007/s00041-021-09896-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of an appropriate choice of derivatives associated with discrete Fourier-Bessel expansions. We introduce a new so-called essential measure Fourier-Bessel setting, where the relevant derivative is simply the ordinary derivative. Then we investigate Riesz transforms and Sobolev spaces in this context. Our main results are L-p-boundedness of the Riesz transforms (even in a multi-dimensional situation) and an isomorphism between the Sobolev and Fourier-Bessel potential spaces. Moreover, throughout the paper we collect various comments concerning two other closely related Fourier-Bessel situations that were considered earlier in the literature. We believe that our observations shed some new light on analysis of Fourier-Bessel expansions.
引用
收藏
页数:59
相关论文
共 50 条
  • [1] On Derivatives, Riesz Transforms and Sobolev Spaces for Fourier–Bessel expansions
    Bartosz Langowski
    Adam Nowak
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [2] Higher Order Riesz Transforms for Fourier-Bessel Expansions
    Ciaurri, Oscar
    Roncal, Luz
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (04) : 770 - 789
  • [3] Higher Order Riesz Transforms for Fourier-Bessel Expansions
    Óscar Ciaurri
    Luz Roncal
    [J]. Journal of Fourier Analysis and Applications, 2012, 18 : 770 - 789
  • [4] HARDY SPACES FOR FOURIER-BESSEL EXPANSIONS
    Dziubanski, Jacek
    Preisner, Marcin
    Roncal, Luz
    Stinga, Pablo Raul
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 128 : 261 - 287
  • [5] Hardy spaces for Fourier-Bessel expansions
    Jacek Dziubański
    Marcin Preisner
    Luz Roncal
    Pablo Raúl Stinga
    [J]. Journal d'Analyse Mathématique, 2016, 128 : 261 - 287
  • [6] The Bochner-Riesz means for Fourier-Bessel expansions
    Ciaurri, O
    Roncal, L
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) : 89 - 113
  • [7] Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions
    Graczyk, P
    Loeb, JJ
    López, IAP
    Nowak, A
    Urbina, WO
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (03): : 375 - 405
  • [8] CONVERGENCE OF FOURIER-BESSEL EXPANSIONS
    STOREY, SH
    [J]. COMPUTER JOURNAL, 1968, 10 (04): : 402 - &
  • [9] Conjugacy for Fourier-Bessel expansions
    Ciaurri, Oscar
    Stempak, Krzysztof
    [J]. STUDIA MATHEMATICA, 2006, 176 (03) : 215 - 247
  • [10] On Basic Fourier-Bessel Expansions
    Cardoso, Jose Luis
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14