Linear Combinations of Composition Operators on the Fock-Sobolev Spaces

被引:0
|
作者
Hong Rae Cho
Boo Rim Choe
Hyungwoon Koo
机构
[1] Pusan National University,Department of Mathematics
[2] Korea University,Department of Mathematics
来源
Potential Analysis | 2014年 / 41卷
关键词
Linear combination of composition operators; Fock space; Fock-sobolev space; Primary 47B33; Secondary 46E20 · 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
We study linear combinations of composition operators acting on the Fock-Sobolev spaces of several variables. We show that such an operator is bounded only when all the composition operators in the combination are bounded individually. In other words, composition operators on the Fock-Sobolev spaces do not possess the same cancelation properties as composition operators on other well-known function spaces over the unit disk. We also show the analogues for compactness and the membership in the Schatten classes. In particular, compactness and the membership in some/all of the Schatten classes turn out to be the same.
引用
下载
收藏
页码:1223 / 1246
页数:23
相关论文
共 50 条
  • [21] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [22] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    Complex Analysis and Operator Theory, 2022, 16
  • [23] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [24] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [25] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [26] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240
  • [27] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [28] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [29] UNITARY, SELF-ADJOINT AND J-SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON FOCK-SOBOLEV SPACES
    Chen, Ren-yu
    Yang, Zi-cong
    Zhou, Ze-hua
    OPERATORS AND MATRICES, 2022, 16 (04): : 1139 - 1154
  • [30] Commuting Toeplitz operators on the Fock-Sobolev space
    Fan, Junmei
    Liu, Liu
    Lu, Yufeng
    ADVANCES IN OPERATOR THEORY, 2022, 7 (03)