Stability of solutions for nonlinear Schrödinger equations in critical spaces

被引:0
|
作者
Dong Li
XiaoYi Zhang
机构
[1] University of Iowa,Department of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
来源
Science China Mathematics | 2011年 / 54卷
关键词
Schrödinger equation; stability; critical space; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for nonlinear Schrödinger equation iut + Δu = ± |u|pu, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {d} < p < \frac{4} {{d - 2}}$\end{document} in high dimensions d ⩾ 6. We prove the stability of solutions in the critical space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot H_x^{s_p }$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s_p = \frac{d} {2} - \frac{2} {p}$\end{document}.
引用
收藏
页码:973 / 986
页数:13
相关论文
共 50 条
  • [41] Standing waves with a critical frequency for nonlinear Schrödinger equations, II
    Jaeyoung Byeon
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2003, 18 : 207 - 219
  • [42] Blow-up Solutions for Mixed Nonlinear Schrdinger Equations
    Shao Bin TAN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (01) : 115 - 124
  • [43] The large time asymptotic solutions of nonlinear Schrödinger type equations
    Liu, Baoping
    Soffer, Avy
    APPLIED NUMERICAL MATHEMATICS, 2024, 199 : 73 - 84
  • [44] On solutions of nonlinear Schrödinger equations with Cantor-type spectrum
    Anne Boutet de Monvel
    Ira Egorova
    Journal d’Analyse Mathematique, 1997, 72 (1): : 1 - 20
  • [45] Ground state solutions for fractional Schrödinger equations with critical exponents
    Zhenyu Guo
    Xueqian Yan
    Proceedings - Mathematical Sciences, 132
  • [46] Self-similar solutions of equations of the nonlinear Schrödinger type
    V. G. Marikhin
    A. B. Shabat
    M. Boiti
    F. Pempinelli
    Journal of Experimental and Theoretical Physics, 2000, 90 : 553 - 561
  • [47] Blow-up Solutions for Mixed Nonlinear Schrödinger Equations
    Shao Bin Tan
    Acta Mathematica Sinica, 2004, 20 : 115 - 124
  • [48] Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 : 1383 - 1412
  • [49] Normalized Ground State Solutions for Critical Growth Schrödinger Equations
    Song Fan
    Gui-Dong Li
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [50] Blow-up solutions of inhomogeneous nonlinear Schrödinger equations
    Peter Y. H. Pang
    Hongyan Tang
    Youde Wang
    Calculus of Variations and Partial Differential Equations, 2006, 26 : 137 - 169