Stability of solutions for nonlinear Schrödinger equations in critical spaces

被引:0
|
作者
Dong Li
XiaoYi Zhang
机构
[1] University of Iowa,Department of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
来源
Science China Mathematics | 2011年 / 54卷
关键词
Schrödinger equation; stability; critical space; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for nonlinear Schrödinger equation iut + Δu = ± |u|pu, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {d} < p < \frac{4} {{d - 2}}$\end{document} in high dimensions d ⩾ 6. We prove the stability of solutions in the critical space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot H_x^{s_p }$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s_p = \frac{d} {2} - \frac{2} {p}$\end{document}.
引用
收藏
页码:973 / 986
页数:13
相关论文
共 50 条