Standing waves with a critical frequency for nonlinear Schrödinger equations, II

被引:0
|
作者
Jaeyoung Byeon
Zhi-Qiang Wang
机构
[1] POSTECH,Department of Mathematics
[2] Utah State University,Department of Mathematics and Statistics
关键词
Local Minimum; State Solution; Potential Versus; Elliptic Equation; General Class;
D O I
暂无
中图分类号
学科分类号
摘要
For elliptic equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u -V(\varepsilon x) u + f(u)=0, x\in {\bf R}^N$\end{document}, where the potential V satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\liminf_{\vert x\vert\to \infty} V(x) > \inf_{{\bf R}^N} V(x) =0$\end{document}, we develop a new variational approach to construct localized bound state solutions concentrating at an isolated component of the local minimum of V where the minimum value of V can be positive or zero. These solutions give rise to standing wave solutions having a critical frequency for the corresponding nonlinear Schrödinger equations. Our method allows a fairly general class of nonlinearity f(u) including ones without any growth restrictions at large.
引用
收藏
页码:207 / 219
页数:12
相关论文
共 50 条