Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations

被引:0
|
作者
Jianfu Yang
Jinge Yang
机构
[1] Jiangxi Normal University,Department of Mathematics
[2] Nanchang Institute of Technology,School of Science
来源
Science China Mathematics | 2022年 / 65卷
关键词
supercritical; constrained problem; existence; asymptotic behavior; 35B38; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the existence and concentration of normalized solutions to the supercritical nonlinear Schrödinger equation {−Δu+V(x)u=μqu+a|u|quinℝ2,∫ℝ2|u|2dx=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{ { - {\rm{\Delta }}u + V\left( x \right)u = {\mu _q}u + a{{\left| u \right|}^q}u\,\,\,{\rm{in}}\,{\mathbb{R}^2},} \hfill \cr {\int_{{\mathbb{R}^2}} {{{\left| u \right|}^2}dx = 1,} } \hfill \cr } } \right.$$\end{document} where μq is the Lagrange multiplier. We show that for q > 2 close to 2, the problem admits two solutions: one is the local minimal solution uq and the other one is the mountain pass solution υq. Furthermore, we study the limiting behavior of uq and υq when q → 2+. Particularly, we describe precisely the blow-up formation of the excited state υq.
引用
收藏
页码:1383 / 1412
页数:29
相关论文
共 50 条