Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations

被引:0
|
作者
Jianfu Yang
Jinge Yang
机构
[1] Jiangxi Normal University,Department of Mathematics
[2] Nanchang Institute of Technology,School of Science
来源
Science China Mathematics | 2022年 / 65卷
关键词
supercritical; constrained problem; existence; asymptotic behavior; 35B38; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the existence and concentration of normalized solutions to the supercritical nonlinear Schrödinger equation {−Δu+V(x)u=μqu+a|u|quinℝ2,∫ℝ2|u|2dx=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{ { - {\rm{\Delta }}u + V\left( x \right)u = {\mu _q}u + a{{\left| u \right|}^q}u\,\,\,{\rm{in}}\,{\mathbb{R}^2},} \hfill \cr {\int_{{\mathbb{R}^2}} {{{\left| u \right|}^2}dx = 1,} } \hfill \cr } } \right.$$\end{document} where μq is the Lagrange multiplier. We show that for q > 2 close to 2, the problem admits two solutions: one is the local minimal solution uq and the other one is the mountain pass solution υq. Furthermore, we study the limiting behavior of uq and υq when q → 2+. Particularly, we describe precisely the blow-up formation of the excited state υq.
引用
收藏
页码:1383 / 1412
页数:29
相关论文
共 50 条
  • [11] Normalized solutions for the discrete Schrödinger equations
    Qilin Xie
    Huafeng Xiao
    Boundary Value Problems, 2023
  • [12] Normalized Solutions of Mass Subcritical Fractional Schrödinger Equations in Exterior Domains
    Shubin Yu
    Chunlei Tang
    Ziheng Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [13] Normalized solutions for the Schrödinger systems with mass supercritical and double Sobolev critical growth
    Mei-Qi Liu
    Xiang-Dong Fang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [14] Normalized Solutions of Schrödinger Equations with Combined Nonlinearities
    Dai, Ting-ting
    Ou, Zeng-qi
    Lv, Ying
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [15] Normalized Solutions of Schrödinger Equations with Combined Nonlinearities
    Ting-ting Dai
    Zeng-qi Ou
    Ying Lv
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [16] Existence and dynamics of normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians
    Lassaad Chergui
    Tianxiang Gou
    Hichem Hajaiej
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [17] Normalized Solutions of Nonlinear Schrödinger Equations with Potentials and Non-autonomous Nonlinearities
    Zuo Yang
    Shijie Qi
    Wenming Zou
    The Journal of Geometric Analysis, 2022, 32
  • [18] Supercritical Geometric Optics for Nonlinear Schrödinger Equations
    Thomas Alazard
    Rémi Carles
    Archive for Rational Mechanics and Analysis, 2009, 194 : 315 - 347
  • [19] Loss of regularity for supercritical nonlinear Schrödinger equations
    Thomas Alazard
    Rémi Carles
    Mathematische Annalen, 2009, 343 : 397 - 420
  • [20] Normalized solutions to the Schrödinger–Poisson–Slater equation with general nonlinearity: mass supercritical case
    Qun Wang
    Aixia Qian
    Analysis and Mathematical Physics, 2023, 13