Weak solutions for elliptic systems with variable growth in Clifford analysis

被引:0
|
作者
Yongqiang Fu
Binlin Zhang
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
关键词
elliptic system; Clifford analysis; variable exponent; Dirichlet problem; 30G35; 35J60; 35D30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the following Dirichlet problem for elliptic systems: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{*{20}c} {\overline {DA\left( {x,u\left( x \right),Du\left( x \right)} \right)} = B\left( {x,u\left( x \right),Du\left( x \right)} \right), x \in \Omega ,} \\ {u\left( x \right) = 0, x\partial \Omega } \\ \end{array}$$\end{document} where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz domain Ω in ℝn and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W01,p(x) (Ω,Cℓn) under appropriate assumptions.
引用
收藏
页码:643 / 670
页数:27
相关论文
共 50 条