WEAK DIFFERENTIABILITY FOR SOLUTIONS TO NONLINEAR ELLIPTIC-SYSTEMS WITH P, Q-GROWTH CONDITIONS

被引:16
|
作者
LEONETTI, F [1 ]
机构
[1] UNIV LAQUILA,DIPARTIMENTO MATEMAT PURA & APPLICATA,I-67100 LAQUILA,ITALY
来源
关键词
D O I
10.1007/BF01760015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a vector-valued function u is-an-element-of W(loc)1, q(OMEGA; R(N)), OMEGA subset-of R(n), which is a weak solution of the elliptic system - SIGMA(i = 1)n D(i) {a(alpha)i(x, Du(x))} = 0, alpha = 1, ..., N. If the so-called <<p, q-growth conditions>> hold, then we prove that: (1 + \Du\2)P/4 is-an-element-of W(loc)1, 2(OMEGA); x --> a(alpha)i(x, Du(x)) is-an-element-of W(loc)1, q/(q - 1)(OMEGA); u is-an-element-of W(loc)2, 2(OMEGA; R(N)).
引用
收藏
页码:349 / 366
页数:18
相关论文
共 50 条