Weak solutions for elliptic systems with variable growth in Clifford analysis

被引:0
|
作者
Yongqiang Fu
Binlin Zhang
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
关键词
elliptic system; Clifford analysis; variable exponent; Dirichlet problem; 30G35; 35J60; 35D30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the following Dirichlet problem for elliptic systems: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{*{20}c} {\overline {DA\left( {x,u\left( x \right),Du\left( x \right)} \right)} = B\left( {x,u\left( x \right),Du\left( x \right)} \right), x \in \Omega ,} \\ {u\left( x \right) = 0, x\partial \Omega } \\ \end{array}$$\end{document} where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz domain Ω in ℝn and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W01,p(x) (Ω,Cℓn) under appropriate assumptions.
引用
收藏
页码:643 / 670
页数:27
相关论文
共 50 条
  • [31] Analysis of Positive Weak Solutions for a Class of Fractional Laplacian Elliptic Systems of Type Kirchhoff
    Guefaifia, Rafik
    Allahem, Ali
    Jan, Rashid
    Boulaaras, Salah
    Biomy, Mohamed
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [32] Existence of three solutions for variable exponent elliptic systems
    Allaoui M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 241 - 253
  • [33] Existence of positive solutions for variable exponent elliptic systems
    Ala, Samira
    Afrouzi, Ghasem Alizadeh
    Zhang, Qihu
    Niknam, Asadollah
    BOUNDARY VALUE PROBLEMS, 2012,
  • [34] Existence of positive solutions for variable exponent elliptic systems
    Samira Ala
    Ghasem Alizadeh Afrouzi
    Qihu Zhang
    Asadollah Niknam
    Boundary Value Problems, 2012
  • [35] Quasilinear elliptic systems with nonstandard growth and weak monotonicity
    Elhoussine Azroul
    Farah Balaadich
    Ricerche di Matematica, 2020, 69 : 35 - 51
  • [36] A PRIORI BOUNDS FOR WEAK SOLUTIONS TO ELLIPTIC EQUATIONS WITH NONSTANDARD GROWTH
    Winkert, Patrick
    Zacher, Rico
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (04): : 865 - 878
  • [37] Growth conditions and regularity for weak solutions to nonlinear elliptic pdes
    Marcellini, Paolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [38] Quasilinear elliptic systems with nonstandard growth and weak monotonicity
    Azroul, Elhoussine
    Balaadich, Farah
    RICERCHE DI MATEMATICA, 2020, 69 (01) : 35 - 51
  • [39] Convergence of very weak solutions to A-Dirac equations in Clifford analysis
    Lu, Yueming
    Bi, Hui
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [40] Convergence of very weak solutions to A-Dirac equations in Clifford analysis
    Yueming Lu
    Hui Bi
    Advances in Difference Equations, 2015