Weak solutions for elliptic systems with variable growth in Clifford analysis

被引:0
|
作者
Yongqiang Fu
Binlin Zhang
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
关键词
elliptic system; Clifford analysis; variable exponent; Dirichlet problem; 30G35; 35J60; 35D30; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the following Dirichlet problem for elliptic systems: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{*{20}c} {\overline {DA\left( {x,u\left( x \right),Du\left( x \right)} \right)} = B\left( {x,u\left( x \right),Du\left( x \right)} \right), x \in \Omega ,} \\ {u\left( x \right) = 0, x\partial \Omega } \\ \end{array}$$\end{document} where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz domain Ω in ℝn and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W01,p(x) (Ω,Cℓn) under appropriate assumptions.
引用
收藏
页码:643 / 670
页数:27
相关论文
共 50 条
  • [41] Regularity of very weak solutions for a class of nonlinear elliptic systems
    Zheng, SZ
    Fang, AN
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1998, 14 : 733 - 740
  • [42] REMOVABLE SINGULARITIES FOR WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC-SYSTEMS
    MEIER, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 344 : 87 - 101
  • [43] On the existence of weak solutions for a class of elliptic partial differential systems
    Fu, YQ
    Dong, ZF
    Yan, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (07) : 961 - 977
  • [44] CONVERGENCE RESULT FOR THE WEAK SOLUTIONS OF NONLINEAR ELLIPTIC-SYSTEMS
    ISOBE, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (08) : 1247 - 1259
  • [45] OPTIMAL REGULARITY THEOREM FOR WEAK SOLUTIONS TO CERTAIN ELLIPTIC SYSTEMS
    WIEGNER, M
    MATHEMATISCHE ZEITSCHRIFT, 1976, 147 (01) : 21 - 28
  • [46] WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC SYSTEMS VIA THE COHOMOLOGICAL INDEX
    Candela, Anna Maria
    Medeiros, Everaldo
    Palmieri, Giuliana
    Perera, Kaniskha
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 36 (01) : 1 - 18
  • [47] Existence of weak solutions for quasilinear elliptic systems in Orlicz spaces
    Azroul, Elhoussine
    Balaadich, Farah
    APPLICABLE ANALYSIS, 2019,
  • [48] Local Boundedness for Weak Solutions to some Quasilinear Elliptic Systems
    Leonardi, Salvatore
    Leonetti, Francesco
    Pignotti, Cristina
    Rocha, Eugenio
    Staicu, Vasile
    MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 365 - 378
  • [49] Infinitely many weak solutions for a class of quasilinear elliptic systems
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    O'Regan, Donal
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 152 - 160
  • [50] Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems
    Dong, Yan
    Niu, Pengcheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2383 - 2414