Dictionary-based model reduction for state estimation

被引:0
|
作者
Nouy, Anthony [1 ]
Pasco, Alexandre [1 ]
机构
[1] Nantes Univ, Cent Nantes, Lab Math Jean Leray UMR CNRS 6629, F-44322 Nantes, France
关键词
Inverse problem; Model order reduction; Sparse approximation; Randomized linear algebra; REDUCED BASIS METHOD; INTERPOLATION; ALGORITHMS;
D O I
10.1007/s10444-024-10129-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of state estimation from a few linear measurements, where the state to recover is an element of the manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of solutions of a parameter-dependent equation. The state is estimated using prior knowledge on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} coming from model order reduction. Variational approaches based on linear approximation of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such as PBDW, yield a recovery error limited by the Kolmogorov width of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. To overcome this issue, piecewise-affine approximations of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} have also been considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from a set of & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least-squares problems. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parametrizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] A Double Dictionary-Based Nonlinear Representation Model for Hyperspectral Subpixel Target Detection
    Wang, Xiaoyi
    Wang, Liguo
    Wu, Hao
    Wang, Jiawen
    Sun, Kaipeng
    Lin, Anqi
    Wang, Qunming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Dictionary-based Model Order Reduction via POD-DEIM with Support Vector Machine for the Parametrized Burgers' Equation
    Sukuntee, Norapon
    Chaturantabut, Saifon
    THAI JOURNAL OF MATHEMATICS, 2022, : 38 - 52
  • [33] An Incremental Scheme for Dictionary-based Compressive SLAM
    Tomomi, Nagasaka
    Kanji, Tanaka
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 872 - 879
  • [34] Off-line dictionary-based compression
    Larsson, NJ
    Moffat, A
    PROCEEDINGS OF THE IEEE, 2000, 88 (11) : 1722 - 1732
  • [35] Lossy dictionary-based image compression method
    Dudek, Gabriela
    Borys, Przemyslaw
    Grzywna, Zbigniew J.
    IMAGE AND VISION COMPUTING, 2007, 25 (06) : 883 - 889
  • [36] Dictionary-based probability density function estimation for high-resolution SAR data
    Krylov, Vladimir
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    COMPUTATIONAL IMAGING VII, 2009, 7246
  • [37] Dictionary-Based Statistical Fingerprinting for Indoor Localization
    Kumar, Chirag
    Rajawat, Ketan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (09) : 8827 - 8841
  • [38] Dictionary-based Fidelity Measure for Virtual Traffic
    Chao, Qianwen
    Deng, Zhigang
    Xiao, Yangxi
    He, Dunbang
    Miao, Qiguang
    Jin, Xiaogang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (03) : 1490 - 1501
  • [39] THE STATISTICAL DICTIONARY-BASED STRING MATCHING PROBLEM
    Suri, M.
    Rini, S.
    IRAN WORKSHOP ON COMMUNICATION AND INFORMATION THEORY (IWCIT 2019), 2019,
  • [40] Fast Dictionary-Based Compression for Inverted Indexes
    Pibiri, Giulio Ermanno
    Petri, Matthias
    Moffat, Alistair
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 6 - 14