Dictionary-based model reduction for state estimation

被引:0
|
作者
Nouy, Anthony [1 ]
Pasco, Alexandre [1 ]
机构
[1] Nantes Univ, Cent Nantes, Lab Math Jean Leray UMR CNRS 6629, F-44322 Nantes, France
关键词
Inverse problem; Model order reduction; Sparse approximation; Randomized linear algebra; REDUCED BASIS METHOD; INTERPOLATION; ALGORITHMS;
D O I
10.1007/s10444-024-10129-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of state estimation from a few linear measurements, where the state to recover is an element of the manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of solutions of a parameter-dependent equation. The state is estimated using prior knowledge on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} coming from model order reduction. Variational approaches based on linear approximation of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such as PBDW, yield a recovery error limited by the Kolmogorov width of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. To overcome this issue, piecewise-affine approximations of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} have also been considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from a set of & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least-squares problems. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parametrizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Dictionary-based compressive Fourier ptychography
    Li, Xianye
    Li, Li
    Liu, Xiaoli
    He, Wenqi
    Tang, Qijian
    Han, Sen
    Peng, Xiang
    OPTICS LETTERS, 2022, 47 (09) : 2314 - 2317
  • [22] Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems
    Herkert, Robin
    Buchfink, Patrick
    Haasdonk, Bernard
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (01)
  • [23] Dictionary-Based DGAs Variants Detection
    Mahmood, Raja Azlina Raja
    Abdullah, Azizol
    Hussin, Masnida
    Udzir, Nur Izura
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 258 - 269
  • [24] Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV
    Bodnariuc, Ecaterina
    Gurung, Arati
    Petra, Stefania
    Schnoerr, Christoph
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, EMMCVPR 2015, 2015, 8932 : 378 - 391
  • [25] Randomized linear algebra for model reduction-part II: minimal residual methods and dictionary-based approximation
    Balabanov, Oleg
    Nouy, Anthony
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (02)
  • [26] Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems
    Robin Herkert
    Patrick Buchfink
    Bernard Haasdonk
    Advances in Computational Mathematics, 2024, 50
  • [27] A dictionary-based approach for gene annotation
    Pachter, L
    Batzoglou, S
    Spitkovsky, VI
    Banks, E
    Lander, ES
    Kleitman, DJ
    Berger, B
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 419 - 430
  • [28] DICTIONARY-BASED MULTIPLE INSTANCE LEARNING
    Shrivastava, Ashish
    Pillai, Jaishanker K.
    Patel, Vishal M.
    Chellappa, Rama
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 160 - 164
  • [29] Dictionary-based fast transform for text compression
    Sun, WF
    Zhang, N
    Mukherjee, A
    ITCC 2003: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2003, : 176 - 182
  • [30] An Optimized Dictionary-Based Model Identification Method in the Scope of Brain Effective Connectivity
    Greige, Marc
    Karfoul, Ahmad
    Merlet, Isabelle
    Jeannes, Regine Le Bouquin
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1002 - 1006