Dictionary-based model reduction for state estimation

被引:0
|
作者
Nouy, Anthony [1 ]
Pasco, Alexandre [1 ]
机构
[1] Nantes Univ, Cent Nantes, Lab Math Jean Leray UMR CNRS 6629, F-44322 Nantes, France
关键词
Inverse problem; Model order reduction; Sparse approximation; Randomized linear algebra; REDUCED BASIS METHOD; INTERPOLATION; ALGORITHMS;
D O I
10.1007/s10444-024-10129-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of state estimation from a few linear measurements, where the state to recover is an element of the manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of solutions of a parameter-dependent equation. The state is estimated using prior knowledge on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} coming from model order reduction. Variational approaches based on linear approximation of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such as PBDW, yield a recovery error limited by the Kolmogorov width of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. To overcome this issue, piecewise-affine approximations of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} have also been considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from a set of & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least-squares problems. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parametrizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.
引用
收藏
页数:31
相关论文
共 50 条
  • [11] Programmability in dictionary-based compression
    Heikkinen, Jari
    Takala, Janno
    2006 INTERNATIONAL SYMPOSIUM ON SYSTEM-ON-CHIP PROCEEDINGS, 2006, : 171 - +
  • [12] Dictionary-based background subtraction
    Sang, N. (nsang@hust.edu.cn), 1600, Huazhong University of Science and Technology (41):
  • [13] Randomized linear algebra for model reduction—part II: minimal residual methods and dictionary-based approximation
    Oleg Balabanov
    Anthony Nouy
    Advances in Computational Mathematics, 2021, 47
  • [14] Revisiting dictionary-based compression
    Skibinski, P
    Grabowski, S
    Deorowicz, S
    SOFTWARE-PRACTICE & EXPERIENCE, 2005, 35 (15): : 1455 - 1476
  • [15] Dictionary-based discriminative hmm parameter estimation for continuous speech recognition systems
    Willett, D
    Neukirchen, C
    Rottland, J
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 1515 - 1518
  • [16] Tissue microstructure estimation using a deep network inspired by a dictionary-based framework
    Ye, Chuyang
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 288 - 299
  • [17] Dictionary-based electric properties tomography
    Hampe, Nils
    Herrmann, Max
    Amthor, Thomas
    Findeklee, Christian
    Doneva, Mariya
    Katscher, Ulrich
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 342 - 349
  • [18] DESIGN AND IMPLEMENTATION OF A DICTIONARY-BASED ARCHIVER
    Radescu, Radu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2008, 70 (03): : 21 - 28
  • [19] Dictionary-based methods for information extraction
    Baronchelli, A
    Caglioti, E
    Loreto, V
    Pizzi, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 294 - 300
  • [20] Design and implementation of a dictionary-based archiver
    Dept. of Applied Electronics and Information Engineering, University Politehnica of Bucharest, Bucharest, Romania
    UPB Sci. Bull. Ser. C Electr. Eng., 2008, 3 (21-28):