Truncation Analysis for the Derivative Schrödinger Equation

被引:0
|
作者
Peng Cheng Xu
Qian Shun Chang
Bo Ling Guo
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and System Sciences
[2] Institute of Applied Physics and Computational Mathematics,undefined
来源
Acta Mathematica Sinica | 2002年 / 18卷
关键词
Derivative nonlinear Schrödinger equation; Geometric singular perturbation theory; Melnikov's technique; 34C25; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
The truncation equation for the derivative nonlinear Schrödinger equation has been discussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [1] Bifurcation analysis for mixed derivative nonlinear Schrödinger's equation , α-helix nonlinear Schrödinger's equation and Zoomeron model
    Rizvi, Syed T. R.
    Seadawy, Aly R.
    Naqvi, S. Kamran
    Ismail, Muhammad
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [2] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [3] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [4] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99
  • [5] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    Communications in Mathematical Physics, 2018, 363 : 1003 - 1049
  • [6] The Derivative Nonlinear Schrödinger Equation in Analytic Classes
    Zoran Grujić
    Henrik Kalisch
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) : 62 - 71
  • [7] On Darboux transformations for the derivative nonlinear Schrödinger equation
    Jonathan J. C. Nimmo
    Halis Yilmaz
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 278 - 293
  • [8] Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
    Gustavo Krause
    Sergio Elaskar
    Ezequiel del Río
    Nonlinear Dynamics, 2014, 77 : 455 - 466
  • [9] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Mathematische Annalen, 2019, 374 : 1075 - 1138
  • [10] Birkhoff Normal Form for the Derivative Nonlinear Schr?dinger Equation
    Jian Jun LIU
    ActaMathematicaSinica,EnglishSeries, 2022, (01) : 249 - 262