Strange Tori of the Derivative Nonlinear Schrödinger Equation

被引:0
|
作者
Y. Charles Li
机构
[1] University of Missouri,Department of Mathematics
来源
关键词
primary 35; 37; secondary 34; 78; strange torus; derivative nonlinear Schrödinger equation; Lax pair; Darboux transformation; Floquet theory;
D O I
暂无
中图分类号
学科分类号
摘要
Under periodic boundary condition, the derivative nonlinear Schrödinger equation is studied. By virtue of Darboux transformations, I show that its level set can contain many disconnected tori of different dimensions. Such a picture was not seen before. I also give a formula for diffusions along these tori. The open problem on invariant manifolds is discussed.
引用
收藏
页码:83 / 99
页数:16
相关论文
共 50 条
  • [1] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica, 2020, 36 (02) : 153 - 170
  • [2] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica,English Series, 2020, 36 (02) : 153 - 170
  • [3] KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation
    Dong Feng Yan
    Guang Hua Shi
    Acta Mathematica Sinica, English Series, 2020, 36 : 153 - 170
  • [4] Strange tori of the derivative nonlinear Schrodinger equation
    Li, Y. Charles
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (01) : 83 - 99
  • [5] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [6] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [7] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    Communications in Mathematical Physics, 2018, 363 : 1003 - 1049
  • [8] The Derivative Nonlinear Schrödinger Equation in Analytic Classes
    Zoran Grujić
    Henrik Kalisch
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) : 62 - 71
  • [9] On Darboux transformations for the derivative nonlinear Schrödinger equation
    Jonathan J. C. Nimmo
    Halis Yilmaz
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 278 - 293
  • [10] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Mathematische Annalen, 2019, 374 : 1075 - 1138