Strange Tori of the Derivative Nonlinear Schrödinger Equation

被引:0
|
作者
Y. Charles Li
机构
[1] University of Missouri,Department of Mathematics
来源
关键词
primary 35; 37; secondary 34; 78; strange torus; derivative nonlinear Schrödinger equation; Lax pair; Darboux transformation; Floquet theory;
D O I
暂无
中图分类号
学科分类号
摘要
Under periodic boundary condition, the derivative nonlinear Schrödinger equation is studied. By virtue of Darboux transformations, I show that its level set can contain many disconnected tori of different dimensions. Such a picture was not seen before. I also give a formula for diffusions along these tori. The open problem on invariant manifolds is discussed.
引用
收藏
页码:83 / 99
页数:16
相关论文
共 50 条
  • [31] Notes on Global Existence for the Nonlinear Schrdinger Equation Involves Derivative
    Shi Yang ZHENG
    Acta Mathematica Sinica(English Series), 2014, 30 (10) : 1735 - 1747
  • [32] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [33] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [34] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [35] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [36] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [37] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [38] Truncation Analysis for the Derivative Schrödinger Equation
    Peng Cheng Xu
    Qian Shun Chang
    Bo Ling Guo
    Acta Mathematica Sinica, 2002, 18 : 137 - 146
  • [39] N-Soliton Solutions of General Nonlinear Schrdinger Equation with Derivative
    ZHAI Wen CHEN Deng-Yuan Department of Mathematics
    Communications in Theoretical Physics, 2008, 49 (05) : 1101 - 1104
  • [40] Smooth Positons of the Second-Type Derivative Nonlinear Schr?dinger Equation
    刘树芝
    张永帅
    贺劲松
    Communications in Theoretical Physics, 2019, 71 (04) : 357 - 361