On Darboux transformations for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Jonathan J. C. Nimmo
Halis Yilmaz
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University of Dicle,Department of Mathematics
关键词
Derivative nonlinear Schrödinger equation; Darboux transformation; Quasideterminants; 35C08; 35Q55; 37K10; 37K35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Darboux transformations for the derivative nonlinear Schrödinger equation. A new theorem for Darboux transformations of operators with no derivative term are presented and proved. The solution is expressed in quasideterminant forms. Additionally, the parabolic and soliton solutions of the derivative nonlinear Schrödinger equation are given as explicit examples.
引用
收藏
页码:278 / 293
页数:15
相关论文
共 50 条
  • [1] Darboux and generalized Darboux transformations for the fractional integrable derivative nonlinear Schrödinger equation
    Zhang, Sheng
    Zhang, Yuying
    Xu, Bo
    Li, Xinyu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [2] Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    G. Giorgadze
    Physics of Atomic Nuclei, 2007, 70 : 607 - 610
  • [3] Supersymmetry and Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    A. Schulze-Halberg
    E. P. Velicheva
    Physics of Atomic Nuclei, 2009, 72 : 858 - 865
  • [4] Darboux Transformation of the Second-Type Derivative Nonlinear Schrödinger Equation
    Yongshuai Zhang
    Lijuan Guo
    Jingsong He
    Zixiang Zhou
    Letters in Mathematical Physics, 2015, 105 : 853 - 891
  • [5] Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation
    Xianguo Geng
    Yanyan Lv
    Nonlinear Dynamics, 2012, 69 : 1621 - 1630
  • [6] On Darboux transformations for the derivative nonlinear Schrodinger equation
    Nimmo, Jonathan J. C.
    Yilmaz, Halis
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 278 - 293
  • [7] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [8] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [9] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99
  • [10] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    Communications in Mathematical Physics, 2018, 363 : 1003 - 1049