On Darboux transformations for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Jonathan J. C. Nimmo
Halis Yilmaz
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University of Dicle,Department of Mathematics
关键词
Derivative nonlinear Schrödinger equation; Darboux transformation; Quasideterminants; 35C08; 35Q55; 37K10; 37K35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Darboux transformations for the derivative nonlinear Schrödinger equation. A new theorem for Darboux transformations of operators with no derivative term are presented and proved. The solution is expressed in quasideterminant forms. Additionally, the parabolic and soliton solutions of the derivative nonlinear Schrödinger equation are given as explicit examples.
引用
收藏
页码:278 / 293
页数:15
相关论文
共 50 条
  • [41] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [42] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [43] On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation
    Xuelin Yong
    Guo Wang
    Wei Li
    Yehui Huang
    Jianwei Gao
    Nonlinear Dynamics, 2017, 87 : 75 - 82
  • [44] Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrodinger equation
    Zhou, Zi-Xiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 62 : 480 - 488
  • [45] Darboux transformation and elementary exact solutions of the Schrödinger equation
    Vladislav G Bagrov
    Boris F Samsonov
    Pramana, 1997, 49 : 563 - 580
  • [46] The Darboux Transformation for a New Fractional Schrödinger Equation Hierarchy
    Zhu, Xiao-ming
    Zhang, Jian-bing
    Chen, Shou-ting
    ADVANCES IN MATHEMATICAL PHYSICS, 2024, 2024
  • [47] Integration of the Schrödinger equation by canonical transformations
    Tsaur, Gin-Yih
    Wang, Jyhpyng
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (01): : 121041 - 121047
  • [48] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [49] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [50] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40