Truncation Analysis for the Derivative Schrödinger Equation

被引:0
|
作者
Peng Cheng Xu
Qian Shun Chang
Bo Ling Guo
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and System Sciences
[2] Institute of Applied Physics and Computational Mathematics,undefined
来源
Acta Mathematica Sinica | 2002年 / 18卷
关键词
Derivative nonlinear Schrödinger equation; Geometric singular perturbation theory; Melnikov's technique; 34C25; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
The truncation equation for the derivative nonlinear Schrödinger equation has been discussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [31] THE ZAKHAROV-SHABAT EQUATIONS FOR THE DERIVATIVE NONLINEAR SCHRDINGER EQUATION
    黄念宁
    廖国钧
    ChineseScienceBulletin, 1991, (22) : 1935 - 1936
  • [32] The vector derivative nonlinear Schrödinger equation on the half-line
    Liu, Huan
    Geng, Xianguo
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2018, 83 (01): : 148 - 173
  • [33] Notes on Global Existence for the Nonlinear Schrdinger Equation Involves Derivative
    Shi Yang ZHENG
    Acta Mathematica Sinica(English Series), 2014, 30 (10) : 1735 - 1747
  • [34] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [35] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [36] Truncation analysis for the derivative Schrodinger equation
    Xu, PC
    Chang, QS
    Guo, BL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (01) : 137 - 146
  • [37] Truncation Analysis for the Derivative Schrodinger Equation
    XU Peng Cheng
    CHANG Qian Shun
    GUO Bo Ling Academy of Mathematics and System Sciences. Chinese Academy of Sciences. Beijing 100080. P. R. China Institute of Applied Physics and Computational Mathematics. P. O. Box 8009. Beijing 100080. P. R. China
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (01) : 137 - 146
  • [38] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [39] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [40] N-Soliton Solutions of General Nonlinear Schrdinger Equation with Derivative
    ZHAI Wen CHEN Deng-Yuan Department of Mathematics
    Communications in Theoretical Physics, 2008, 49 (05) : 1101 - 1104