Truncation Analysis for the Derivative Schrödinger Equation

被引:0
|
作者
Peng Cheng Xu
Qian Shun Chang
Bo Ling Guo
机构
[1] Chinese Academy of Sciences,Academy of Mathematics and System Sciences
[2] Institute of Applied Physics and Computational Mathematics,undefined
来源
Acta Mathematica Sinica | 2002年 / 18卷
关键词
Derivative nonlinear Schrödinger equation; Geometric singular perturbation theory; Melnikov's technique; 34C25; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
The truncation equation for the derivative nonlinear Schrödinger equation has been discussed in this paper. The existence of a special heteroclinic orbit has been found by using geometrical singular perturbation theory together with Melnikov's technique.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [11] KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation
    Dong Feng Yan
    Guang Hua Shi
    Acta Mathematica Sinica, English Series, 2020, 36 : 153 - 170
  • [12] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica, 2020, 36 (02) : 153 - 170
  • [13] On the derivative nonlinear Schrödinger equation with weakly dissipative structure
    Chunhua Li
    Yoshinori Nishii
    Yuji Sagawa
    Hideaki Sunagawa
    Journal of Evolution Equations, 2021, 21 : 1541 - 1550
  • [14] Long time stability for the derivative nonlinear Schrödinger equation
    Liu, Jianjun
    Xiang, Duohui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [15] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica,English Series, 2020, 36 (02) : 153 - 170
  • [16] Direct Perturbation Method for Derivative Nonlinear Schrdinger Equation
    CHENG Xue-Ping~1 LIN Ji~2 HAN Ping~11 School of Physics
    Communications in Theoretical Physics, 2008, 50 (08) : 501 - 504
  • [17] Microscopic conservation laws for the derivative Nonlinear Schrödinger equation
    Xingdong Tang
    Guixiang Xu
    Letters in Mathematical Physics, 2021, 111
  • [18] Birkhoff Normal Form for the Derivative Nonlinear Schrödinger Equation
    Jian Jun Liu
    Acta Mathematica Sinica, English Series, 2022, 38 : 249 - 262
  • [19] Optical solutions for a quintic derivative nonlinear Schrödinger equation using symmetry analysis
    Hamed, A.A.
    El-Kalla, I.L.
    Latif, M.S. Abdel
    Kader, A.H. Abdel
    Optik, 309
  • [20] Periodic wave solutions of generalized derivative nonlinear Schrödinger equation
    Department of Computer Science, East China Normal University, Shanghai 200062, China
    不详
    Chin. Phys. Lett., 2008, 11 (3844-3847):