Extended Bose–Hubbard model with dipolar excitons

被引:0
|
作者
C. Lagoin
U. Bhattacharya
T. Grass
R. W. Chhajlany
T. Salamon
K. Baldwin
L. Pfeiffer
M. Lewenstein
M. Holzmann
F. Dubin
机构
[1] Institut des Nanosciences de Paris,
[2] CNRS and Sorbonne Université,undefined
[3] ICFO - Institut de Ciencies Fotoniques,undefined
[4] The Barcelona Institute of Science and Technology,undefined
[5] Institute of Spintronics and Quantum Information,undefined
[6] Faculty of Physics,undefined
[7] Adam Mickiewicz University,undefined
[8] PRISM,undefined
[9] Princeton Institute for the Science and Technology of Materials,undefined
[10] Princeton University,undefined
[11] ICREA,undefined
[12] Pg. Lluís Companys,undefined
[13] Univ. Grenoble Alpes,undefined
[14] CNRS,undefined
[15] LPMMC,undefined
[16] CRHEA – CNRS,undefined
来源
Nature | 2022年 / 609卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3–6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8–12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:4
相关论文
共 50 条
  • [1] Extended Bose-Hubbard model with dipolar excitons
    Lagoin, C.
    Bhattacharya, U.
    Grass, T.
    Chhajlany, R. W.
    Salamon, T.
    Baldwin, K.
    Pfeiffer, L.
    Lewenstein, M.
    Holzmann, M.
    Dubin, F.
    NATURE, 2022, 609 (7927) : 485 - 489
  • [2] Extended Bose-Hubbard model with dipolar and contact interactions
    Biedron, Krzysztof
    Lacki, Mateusz
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [3] Dipolar Bose-Hubbard model
    Lake, Ethan
    Hermele, Michael
    Senthil, T.
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [4] Analysis of Shape Change of Droplet in Dipolar Bose–Hubbard Model
    Kazuhiro Tamura
    Shohei Watabe
    Tetsuro Nikuni
    Journal of Low Temperature Physics, 2022, 208 : 365 - 371
  • [5] Charged excitons in doped extended Hubbard model systems
    vandenBrink, J
    Eder, R
    Sawatzky, GA
    EUROPHYSICS LETTERS, 1997, 37 (07): : 471 - 476
  • [6] Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model
    M. Iskin
    The European Physical Journal B, 2012, 85
  • [7] Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model
    Iskin, M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (02):
  • [8] Disordered Supersolids in the Extended Bose-Hubbard Model
    Lin, Fei
    Maier, T. A.
    Scarola, V. W.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Disordered Supersolids in the Extended Bose-Hubbard Model
    Fei Lin
    T. A. Maier
    V. W. Scarola
    Scientific Reports, 7
  • [10] Excitation and dynamics in the extended Bose-Hubbard model
    Gremaud, Benoit
    Batrouni, George G.
    PHYSICAL REVIEW B, 2016, 93 (03):