Extended Bose–Hubbard model with dipolar excitons

被引:0
|
作者
C. Lagoin
U. Bhattacharya
T. Grass
R. W. Chhajlany
T. Salamon
K. Baldwin
L. Pfeiffer
M. Lewenstein
M. Holzmann
F. Dubin
机构
[1] Institut des Nanosciences de Paris,
[2] CNRS and Sorbonne Université,undefined
[3] ICFO - Institut de Ciencies Fotoniques,undefined
[4] The Barcelona Institute of Science and Technology,undefined
[5] Institute of Spintronics and Quantum Information,undefined
[6] Faculty of Physics,undefined
[7] Adam Mickiewicz University,undefined
[8] PRISM,undefined
[9] Princeton Institute for the Science and Technology of Materials,undefined
[10] Princeton University,undefined
[11] ICREA,undefined
[12] Pg. Lluís Companys,undefined
[13] Univ. Grenoble Alpes,undefined
[14] CNRS,undefined
[15] LPMMC,undefined
[16] CRHEA – CNRS,undefined
来源
Nature | 2022年 / 609卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3–6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8–12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:4
相关论文
共 50 条
  • [41] Variational identification of a fractional Chern insulator in an extended Bose-Hubbard model
    Shapourian, Hassan
    Clark, Bryan K.
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [42] Superfluid-Insulator Phase Transitions of the Extended Bose-Hubbard Model
    Su, Xiao Qiang
    Wang, An Min
    CHINESE JOURNAL OF PHYSICS, 2012, 50 (03) : 500 - 507
  • [43] Strong-coupling perturbation theory for the extended Bose-Hubbard model
    Iskin, M.
    Freericks, J. K.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [44] Spin-1 Bose Hubbard Model with Nearest Neighbour Extended Interaction
    Nabi, Sk Noor
    Basu, Saurabh
    ANNALEN DER PHYSIK, 2018, 530 (01)
  • [45] Super-Tonks-Girardeau quench in the extended Bose-Hubbard model
    Marciniak M.
    Łebek M.
    Kopyciński J.
    Górecki W.
    Ołdziejewski R.
    Pawłowski K.
    Physical Review A, 2023, 108 (04)
  • [46] Supersolid phase of the extended Bose-Hubbard model with an artificial gauge field
    Suthar, K.
    Sable, Hrushikesh
    Bai, Rukmani
    Bandyopadhyay, Soumik
    Pal, Sukla
    Angom, D.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [47] Bose-Einstein Condensation of Dipolar Excitons in a Ring Trap
    Chaplik, A. V.
    JETP LETTERS, 2016, 104 (11) : 791 - 795
  • [48] Conditions and features of the lasing in traps for the bose condensation of dipolar excitons
    P. A. Kalinin
    V. V. Kocharovsky
    Vl. V. Kocharovsky
    Radiophysics and Quantum Electronics, 2011, 54 : 316 - 333
  • [49] The inhomogeneous extended Bose-Hubbard model: A mean-field theory
    Kurdestany, Jamshid Moradi
    Pai, Ramesh V.
    Pandit, Rahul
    ANNALEN DER PHYSIK, 2012, 524 (3-4) : 234 - 244
  • [50] Lasing threshold in traps for Bose-condensation of dipolar excitons
    Kalinin, Petr A.
    Kocharovsky, Vitaly V.
    Kocharovsky, Vladimir V.
    SOLID STATE COMMUNICATIONS, 2012, 152 (12) : 1008 - 1011