Extended Bose–Hubbard model with dipolar excitons

被引:0
|
作者
C. Lagoin
U. Bhattacharya
T. Grass
R. W. Chhajlany
T. Salamon
K. Baldwin
L. Pfeiffer
M. Lewenstein
M. Holzmann
F. Dubin
机构
[1] Institut des Nanosciences de Paris,
[2] CNRS and Sorbonne Université,undefined
[3] ICFO - Institut de Ciencies Fotoniques,undefined
[4] The Barcelona Institute of Science and Technology,undefined
[5] Institute of Spintronics and Quantum Information,undefined
[6] Faculty of Physics,undefined
[7] Adam Mickiewicz University,undefined
[8] PRISM,undefined
[9] Princeton Institute for the Science and Technology of Materials,undefined
[10] Princeton University,undefined
[11] ICREA,undefined
[12] Pg. Lluís Companys,undefined
[13] Univ. Grenoble Alpes,undefined
[14] CNRS,undefined
[15] LPMMC,undefined
[16] CRHEA – CNRS,undefined
来源
Nature | 2022年 / 609卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3–6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8–12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:4
相关论文
共 50 条
  • [21] On the problem of lasing in traps for the bose condensation of dipolar excitons
    Kalinin, P. A.
    Kocharovsky, V. V.
    Kocharovsky, Vl. V.
    SEMICONDUCTORS, 2012, 46 (11) : 1351 - 1357
  • [22] On the problem of lasing in traps for the bose condensation of dipolar excitons
    P. A. Kalinin
    V. V. Kocharovsky
    Vl. V. Kocharovsky
    Semiconductors, 2012, 46 : 1351 - 1357
  • [23] Thermal phase transitions of supersolids in the extended Bose-Hubbard model
    Ng, Kwai-Kong
    PHYSICAL REVIEW B, 2010, 82 (18)
  • [24] Valence bond supersolid in a bilayer extended Bose-Hubbard model
    Ng, Kwai-Kong
    PHYSICAL REVIEW B, 2015, 91 (05):
  • [25] Collective state of the Bose gas of interacting dipolar excitons
    Timofeev, V. B.
    Gorbunov, A. V.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (08)
  • [26] Percolation-enhanced supersolids in the extended Bose-Hubbard model
    Kemburi, B. M.
    Scarola, V. W.
    PHYSICAL REVIEW B, 2012, 85 (02):
  • [27] Extended Bose-Hubbard model with pair hopping on triangular lattice
    Wang Yan-Cheng
    Zhang Wan-Zhou
    Shao Hui
    Guo Wen-An
    CHINESE PHYSICS B, 2013, 22 (09)
  • [28] Quantum phase transitions in the dimerized extended Bose-Hubbard model
    Sugimoto, Koudai
    Ejima, Satoshi
    Lange, Florian
    Fehske, Holger
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [29] Topological Quantum Critical Points in the Extended Bose-Hubbard Model
    Fraxanet, Joana
    Gonzalez-Cuadra, Daniel
    Pfau, Tilman
    Lewenstein, Maciej
    Langen, Tim
    Barbiero, Luca
    PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [30] Bose–Einstei condensation of dipolar excitons in a ring trap
    A. V. Chaplik
    JETP Letters, 2016, 104 : 791 - 795