Extended Bose–Hubbard model with dipolar excitons

被引:0
|
作者
C. Lagoin
U. Bhattacharya
T. Grass
R. W. Chhajlany
T. Salamon
K. Baldwin
L. Pfeiffer
M. Lewenstein
M. Holzmann
F. Dubin
机构
[1] Institut des Nanosciences de Paris,
[2] CNRS and Sorbonne Université,undefined
[3] ICFO - Institut de Ciencies Fotoniques,undefined
[4] The Barcelona Institute of Science and Technology,undefined
[5] Institute of Spintronics and Quantum Information,undefined
[6] Faculty of Physics,undefined
[7] Adam Mickiewicz University,undefined
[8] PRISM,undefined
[9] Princeton Institute for the Science and Technology of Materials,undefined
[10] Princeton University,undefined
[11] ICREA,undefined
[12] Pg. Lluís Companys,undefined
[13] Univ. Grenoble Alpes,undefined
[14] CNRS,undefined
[15] LPMMC,undefined
[16] CRHEA – CNRS,undefined
来源
Nature | 2022年 / 609卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials1,2. For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions3–6. However, accessing longer-range couplings has remained elusive experimentally7. This marks the frontier towards the extended Bose–Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings8–12. Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sites then stabilize an insulating state at half filling. This characteristic feature of the extended Bose–Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:4
相关论文
共 50 条
  • [31] Extended Bose-Hubbard model with pair hopping on triangular lattice
    王艳成
    张万舟
    邵慧
    郭文安
    Chinese Physics B, 2013, 22 (09) : 543 - 550
  • [32] Competing insulating phases in a dimerized extended Bose-Hubbard model
    Hayashi, Aoi
    Mondal, Suman
    Mishra, Tapan
    Das, B. P.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [33] Thermal fluctuations of the extended Bose-Hubbard model at finite temperature
    Zhang, Yuanyu
    Qin, Jihong
    Xu, Junjun
    ANNALS OF PHYSICS, 2023, 455
  • [34] Momentum distribution of the insulating phases of the extended Bose-Hubbard model
    Iskin, M.
    Freericks, J. K.
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [35] Density-dependent tunneling in the extended Bose-Hubbard model
    Maik, Michal
    Hauke, Philipp
    Dutta, Omjyoti
    Lewenstein, Maciej
    Zakrzewski, Jakub
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [36] Extended Bose-Hubbard model with incompressible states at fractional numbers
    Heiselberg, H
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [37] Publisher Correction: Disordered Supersolids in the Extended Bose-Hubbard Model
    Fei Lin
    T. A. Maier
    V. W. Scarola
    Scientific Reports, 8
  • [38] Excitons in the strong coupling limit of the one-dimensional extended Hubbard model
    Barford, W
    PHYSICAL REVIEW B, 2002, 65 (20) : 1 - 5
  • [39] Moire-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures
    Goetting, Niclas
    Lohof, Frederik
    Gies, Christopher
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [40] Supersolid-superfluid phase separation in the extended Bose-Hubbard model
    Kottmann, Korbinian
    Haller, Andreas
    Acin, Antonio
    Astrakharchik, Grigory E.
    Lewenstein, Maciej
    PHYSICAL REVIEW B, 2021, 104 (17)