Extended Bose-Hubbard model with dipolar excitons

被引:21
|
作者
Lagoin, C. [1 ,2 ]
Bhattacharya, U. [3 ]
Grass, T. [3 ]
Chhajlany, R. W. [4 ]
Salamon, T. [3 ]
Baldwin, K. [5 ]
Pfeiffer, L. [5 ]
Lewenstein, M. [3 ,6 ]
Holzmann, M. [7 ]
Dubin, F. [1 ,2 ,8 ]
机构
[1] Inst Nanosci Paris, CNRS, Paris, France
[2] Sorbonne Univ, Paris, France
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelidefels, Spain
[4] Adam Mickiewicz Univ, Fac Phys, Inst Spintron & Quantum Informat, Poznan, Poland
[5] Princeton Univ, Princeton Inst Sci & Technol Mat, PRISM, Princeton, NJ USA
[6] ICREA, Pg Luis Companys, Barcelona, Spain
[7] Univ Grenoble Alpes, LPMMC, CNRS, Grenoble, France
[8] CRHEA, CNRS, Valbonne, France
基金
美国国家科学基金会;
关键词
MOTT INSULATOR; TRANSITION; SUPERFLUID;
D O I
10.1038/s41586-022-05123-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials(1,)(2). For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions(3-6). However, accessing longer-range couplings has remained elusive experimentally(7). This marks the frontier towards the extended Bose-Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings(8-)(12). Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sitesthen stabilize an insulating state at half filling. This characteristic feature of the extended Bose-Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:11
相关论文
共 50 条
  • [1] Extended Bose–Hubbard model with dipolar excitons
    C. Lagoin
    U. Bhattacharya
    T. Grass
    R. W. Chhajlany
    T. Salamon
    K. Baldwin
    L. Pfeiffer
    M. Lewenstein
    M. Holzmann
    F. Dubin
    [J]. Nature, 2022, 609 : 485 - 489
  • [2] Extended Bose-Hubbard model with dipolar and contact interactions
    Biedron, Krzysztof
    Lacki, Mateusz
    Zakrzewski, Jakub
    [J]. PHYSICAL REVIEW B, 2018, 97 (24)
  • [3] Dipolar Bose-Hubbard model
    Lake, Ethan
    Hermele, Michael
    Senthil, T.
    [J]. PHYSICAL REVIEW B, 2022, 106 (06)
  • [4] Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model
    Iskin, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (02):
  • [5] Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model
    M. Iskin
    [J]. The European Physical Journal B, 2012, 85
  • [6] Route to supersolidity for the extended Bose-Hubbard model
    Iskin, M.
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):
  • [7] Phase diagram of the extended Bose-Hubbard model
    Rossini, Davide
    Fazio, Rosario
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [8] Disordered Supersolids in the Extended Bose-Hubbard Model
    Lin, Fei
    Maier, T. A.
    Scarola, V. W.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] Disordered Supersolids in the Extended Bose-Hubbard Model
    Fei Lin
    T. A. Maier
    V. W. Scarola
    [J]. Scientific Reports, 7
  • [10] Extended Bose-Hubbard model on a honeycomb lattice
    Gan, Jing Yu
    Wen, Yu Chuan
    Ye, Jinwu
    Li, Tao
    Yang, Shi-Jie
    Yu, Yue
    [J]. PHYSICAL REVIEW B, 2007, 75 (21):