Extended Bose-Hubbard model with dipolar excitons

被引:21
|
作者
Lagoin, C. [1 ,2 ]
Bhattacharya, U. [3 ]
Grass, T. [3 ]
Chhajlany, R. W. [4 ]
Salamon, T. [3 ]
Baldwin, K. [5 ]
Pfeiffer, L. [5 ]
Lewenstein, M. [3 ,6 ]
Holzmann, M. [7 ]
Dubin, F. [1 ,2 ,8 ]
机构
[1] Inst Nanosci Paris, CNRS, Paris, France
[2] Sorbonne Univ, Paris, France
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelidefels, Spain
[4] Adam Mickiewicz Univ, Fac Phys, Inst Spintron & Quantum Informat, Poznan, Poland
[5] Princeton Univ, Princeton Inst Sci & Technol Mat, PRISM, Princeton, NJ USA
[6] ICREA, Pg Luis Companys, Barcelona, Spain
[7] Univ Grenoble Alpes, LPMMC, CNRS, Grenoble, France
[8] CRHEA, CNRS, Valbonne, France
基金
美国国家科学基金会;
关键词
MOTT INSULATOR; TRANSITION; SUPERFLUID;
D O I
10.1038/s41586-022-05123-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hubbard model constitutes one of the most celebrated theoretical frameworks of condensed-matter physics. It describes strongly correlated phases of interacting quantum particles confined in lattice potentials(1,)(2). For bosons, the Hubbard Hamiltonian has been deeply scrutinized for short-range on-site interactions(3-6). However, accessing longer-range couplings has remained elusive experimentally(7). This marks the frontier towards the extended Bose-Hubbard Hamiltonian, which enables insulating ordered phases at fractional lattice fillings(8-)(12). Here we implement this Hamiltonian by confining semiconductor dipolar excitons in an artificial two-dimensional square lattice. Strong dipolar repulsions between nearest-neighbour lattice sitesthen stabilize an insulating state at half filling. This characteristic feature of the extended Bose-Hubbard model exhibits the signatures theoretically expected for a chequerboard spatial order. Our work thus highlights that dipolar excitons enable controlled implementations of boson-like arrays with strong off-site interactions, in lattices with programmable geometries and more than 100 sites.
引用
收藏
页码:485 / 489
页数:11
相关论文
共 50 条
  • [21] Thermal fluctuations of the extended Bose-Hubbard model at finite temperature
    Zhang, Yuanyu
    Qin, Jihong
    Xu, Junjun
    [J]. ANNALS OF PHYSICS, 2023, 455
  • [22] Density-dependent tunneling in the extended Bose-Hubbard model
    Maik, Michal
    Hauke, Philipp
    Dutta, Omjyoti
    Lewenstein, Maciej
    Zakrzewski, Jakub
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [23] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11): : 2127 - 2171
  • [24] Quantum phase transitions in the dimerized extended Bose-Hubbard model
    Sugimoto, Koudai
    Ejima, Satoshi
    Lange, Florian
    Fehske, Holger
    [J]. PHYSICAL REVIEW A, 2019, 99 (01)
  • [25] Topological Quantum Critical Points in the Extended Bose-Hubbard Model
    Fraxanet, Joana
    Gonzalez-Cuadra, Daniel
    Pfau, Tilman
    Lewenstein, Maciej
    Langen, Tim
    Barbiero, Luca
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [26] Competing insulating phases in a dimerized extended Bose-Hubbard model
    Hayashi, Aoi
    Mondal, Suman
    Mishra, Tapan
    Das, B. P.
    [J]. PHYSICAL REVIEW A, 2022, 106 (01)
  • [27] Publisher Correction: Disordered Supersolids in the Extended Bose-Hubbard Model
    Fei Lin
    T. A. Maier
    V. W. Scarola
    [J]. Scientific Reports, 8
  • [28] Extended Bose-Hubbard model with incompressible states at fractional numbers
    Heiselberg, H
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [29] Percolation-enhanced supersolids in the extended Bose-Hubbard model
    Kemburi, B. M.
    Scarola, V. W.
    [J]. PHYSICAL REVIEW B, 2012, 85 (02):
  • [30] Extended Bose-Hubbard model with pair hopping on triangular lattice
    Wang Yan-Cheng
    Zhang Wan-Zhou
    Shao Hui
    Guo Wen-An
    [J]. CHINESE PHYSICS B, 2013, 22 (09)