New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] New characterizations of weights on dynamic inequalities involving a Hardy operator
    Saker, S. H.
    Alzabut, J.
    Saied, A. I.
    O'Regan, D.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [2] Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions
    Saker, Samir H.
    Saied, Ahmed, I
    Anderson, Douglas R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [3] Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions
    Samir H. Saker
    Ahmed I. Saied
    Douglas R. Anderson
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [4] Some new inequalities involving the Hardy operator
    Nikolova, Ludmila
    Persson, Lars-Erik
    Samko, Natasha
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (02) : 376 - 385
  • [5] New Characterizations of Weights in Hardy and Opial Type Inequalities via Solvability of Dynamic Equations
    Saker, S. H.
    Sayed, A. G.
    Sikorska-Nowak, A.
    Abohela, I.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [6] LORENTZ NORM INEQUALITIES FOR THE HARDY OPERATOR INVOLVING SUPREMA
    Prokhorov, Dmitry V.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1585 - 1592
  • [7] Construction of weights in modular inequalities involving operators of Hardy type
    Kerman, R
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 269 - 278
  • [8] On the multidimensional Hilbert-type inequalities involving the Hardy operator
    Krnic, Mario
    FILOMAT, 2012, 26 (04) : 845 - 857
  • [9] Several Hardy Type Inequalities with Weights Related to Generalized Greiner Operator
    Niu, Pengcheng
    Ou, Yafei
    Han, Junqiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (01): : 153 - 162
  • [10] Hardy inequalities with homogeneous weights
    Hoffmann-Ostenhof, Thomas
    Laptev, Ari
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (11) : 3278 - 3289