New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Adjointations of Operator Inequalities and Characterizations of Operator Monotonicity via Operator Means
    Chansangiam, Pattrawut
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (02): : 93 - 103
  • [42] New Refinements of Some Inequalities Involving Relative Operator Entropy
    S. Soleimani
    A. G. Ghazanfari
    Complex Analysis and Operator Theory, 2019, 13 : 3337 - 3345
  • [43] New Refinements of Some Inequalities Involving Relative Operator Entropy
    Soleimani, S.
    Ghazanfari, A. G.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) : 3337 - 3345
  • [44] CHARACTERIZATIONS OF WEIGHTED HARDY-RELLICH INEQUALITIES AND THEIR APPLICATIONS
    Cao, Jun
    Jin, Yongyang
    Shen, Shoufeng
    Wu, Yurong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 873 - 893
  • [45] p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights
    Nguyen Tuan Duy
    Nguyen Lam
    Guozhen Lu
    The Journal of Geometric Analysis, 2022, 32
  • [46] Optimizing improved hardy inequalities for the biharmonic operator
    Tertikas, A
    Zographopoulos, NB
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1137 - 1139
  • [47] HARDY INEQUALITIES FOR THE FRACTIONAL POWERS OF THE GRUSHIN OPERATOR
    Song, Manli
    Tan, Jinggang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) : 4699 - 4726
  • [48] Hardy type inequalities with weights dependent on the bessel functions
    Nasibullin R.
    Lobachevskii Journal of Mathematics, 2016, 37 (3) : 274 - 283
  • [49] Hardy type inequalities for the fractional relativistic operator
    Roncal, Luz
    MATHEMATICS IN ENGINEERING, 2022, 4 (03):
  • [50] Hardy type inequalities for the fractional relativistic operator†
    Roncal L.
    Mathematics In Engineering, 2021, 4 (03):