New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] L1 Hardy Inequalities with Weights
    Psaradakis, Georgios
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 1703 - 1728
  • [32] Hardy-Sobolev Inequalities with Dunkl Weights
    Dao Nguyen Anh
    Nguyen Tuan Duy
    Lam Hoang Nguyen
    Nguyen Van Phong
    Acta Mathematica Vietnamica, 2023, 48 : 133 - 149
  • [33] Characterizations of reverse dynamic weighted Hardy-type inequalities with kernels on time scales
    S. H. Saker
    M. M. Osman
    D. O’Regan
    R. P. Agarwal
    Aequationes mathematicae, 2021, 95 : 125 - 146
  • [34] Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives
    Saker, S. H.
    Mahmoud, R. R.
    Abdo, K. R.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [35] Characterizations of reverse dynamic weighted Hardy-type inequalities with kernels on time scales
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    AEQUATIONES MATHEMATICAE, 2021, 95 (01) : 125 - 146
  • [36] Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives
    S. H. Saker
    R. R. Mahmoud
    K. R. Abdo
    Journal of Inequalities and Applications, 2021
  • [37] Some Dynamic Inequalities Involving Hilbert and Hardy-Hilbert Operators with Kernels
    O'Regan, Donal
    Rezk, Haytham M.
    Saker, Samir H.
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [38] On Eigenvalue Problems Involving the Critical Hardy Potential and Sobolev Type Inequalities with Logarithmic Weights in Two Dimensions
    Megumi Sano
    Futoshi Takahashi
    The Journal of Geometric Analysis, 2024, 34
  • [39] New characterization of weighted inequalities involving superposition of Hardy integral operators
    Gogatishvili, Amiran
    Unver, Tugce
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3381 - 3409
  • [40] On Eigenvalue Problems Involving the Critical Hardy Potential and Sobolev Type Inequalities with Logarithmic Weights in Two Dimensions
    Sano, Megumi
    Takahashi, Futoshi
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)