New characterizations of weights on dynamic inequalities involving a Hardy operator

被引:0
|
作者
S. H. Saker
J. Alzabut
A. I. Saied
D. O’Regan
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Prince Sultan University,Department of Mathematics and General Sciences
[4] Ostim Technical University,Group of Mathematics, Faculty of Engineering
[5] Benha University,Department of Mathematics, Faculty of Science
[6] Benha,School of Mathematics, Statistics and Applied Mathematics
[7] National University of Ireland,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy type inequality; Hardy’s operator; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 42B25; 42C10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new characterizations of weighted functions of dynamic inequalities containing a Hardy operator on time scales. These inequalities contain the characterization of Ariňo and Muckenhoupt when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{R}$\end{document}, whereas they contain the characterizations of Bennett–Erdmann and Gao when T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T}=\mathbb{N}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Hardy inequalities for weighted Dirac operator
    Adimurthi
    Tintarev, Kyril
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) : 241 - 251
  • [22] Hardy inequalities for weighted Dirac operator
    Kyril Adimurthi
    Annali di Matematica Pura ed Applicata, 2010, 189 : 241 - 251
  • [23] Weighted Inequalities for a Superposition of the Copson Operator and the Hardy Operator
    Amiran Gogatishvili
    Zdeněk Mihula
    Luboš Pick
    Hana Turčinová
    Tuğçe Ünver
    Journal of Fourier Analysis and Applications, 2022, 28
  • [24] Weighted Norm Inequalities for the Hardy Operator
    李登峰
    张彩玉
    数学季刊, 1993, (04) : 58 - 64
  • [25] Weighted Inequalities for a Superposition of the Copson Operator and the Hardy Operator
    Gogatishvili, Amiran
    Mihula, Zdenek
    Pick, Lubos
    Turcinova, Hana
    Unver, Tugce
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (02)
  • [26] L1 Hardy Inequalities with Weights
    Georgios Psaradakis
    Journal of Geometric Analysis, 2013, 23 : 1703 - 1728
  • [27] Function characterizations via commutators of Hardy operator
    Shanzhen Lu
    Frontiers of Mathematics in China, 2021, 16 : 1 - 12
  • [28] Hardy-Sobolev Inequalities with Dunkl Weights
    Anh Dao Nguyen
    Duy Nguyen Tuan
    Nguyen Lam Hoang
    Van Phong Nguyen
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) : 133 - 149
  • [29] Conjugate Hardy's inequalities with decreasing weights
    Cerda, J
    Martin, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (08) : 2341 - 2344
  • [30] Function characterizations via commutators of Hardy operator
    Lu, Shanzhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (01) : 1 - 12