Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions

被引:0
|
作者
Samir H. Saker
Ahmed I. Saied
Douglas R. Anderson
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Benha University,Department of Mathematics, Faculty of Science
[4] Concordia College,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2021年 / 20卷
关键词
Hardy’s type inequality; Monotonic functions; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 47B38; 39A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some new characterizations of weighted functions for dynamic inequalities of Hardy’s type involving monotonic functions on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} in different spaces Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(\mathbb {T})$$\end{document} and Lq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}( \mathbb {T})$$\end{document} when 0<p<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<q<\infty $$\end{document} and p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 1$$\end{document}. The main results will be proved by employing the reverse Hölder inequality, integration by parts, and the Fubini theorem on time scales. The main contribution in this paper is the new proof in the case when p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1$$\end{document}, which has not been considered before on time scales. Moreover, the results unify and extend continuous and discrete systems under one theory.
引用
收藏
相关论文
共 50 条
  • [1] Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions
    Saker, Samir H.
    Saied, Ahmed, I
    Anderson, Douglas R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [2] Some New Dynamic Inequalities Involving Monotonic Functions on Time Scales
    Saker, S. H.
    Awwad, E.
    Saied, A.
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [3] New characterizations of weights on dynamic inequalities involving a Hardy operator
    S. H. Saker
    J. Alzabut
    A. I. Saied
    D. O’Regan
    Journal of Inequalities and Applications, 2021
  • [4] New characterizations of weights on dynamic inequalities involving a Hardy operator
    Saker, S. H.
    Alzabut, J.
    Saied, A. I.
    O'Regan, D.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [5] On Some New Dynamic Inequalities Involving C-Monotonic Functions on Time Scales
    AlNemer, Ghada
    Saied, A. I.
    Hassan, A. M.
    Cesarano, Clemente
    Rezk, Haytham M. M.
    Zakarya, Mohammed
    AXIOMS, 2022, 11 (11)
  • [6] Some New Weighted Dynamic Inequalities for Monotone Functions Involving Kernels
    Saker, Samir H.
    Saied, Ahmed I.
    Krnic, Mario
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [7] Some New Weighted Dynamic Inequalities for Monotone Functions Involving Kernels
    Samir H. Saker
    Ahmed I. Saied
    Mario Krnić
    Mediterranean Journal of Mathematics, 2020, 17
  • [8] Some new dynamic Hardy-type inequalities with kernels involving monotone functions
    Saker, Samir H.
    Saied, Ahmed, I
    Krnic, Mario
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [9] Some new dynamic Hardy-type inequalities with kernels involving monotone functions
    Samir H. Saker
    Ahmed I. Saied
    Mario Krnić
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [10] Some completely monotonic functions involving the polygamma functions
    Peng Gao
    Journal of Inequalities and Applications, 2019