Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions

被引:0
|
作者
Samir H. Saker
Ahmed I. Saied
Douglas R. Anderson
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Benha University,Department of Mathematics, Faculty of Science
[4] Concordia College,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2021年 / 20卷
关键词
Hardy’s type inequality; Monotonic functions; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 47B38; 39A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some new characterizations of weighted functions for dynamic inequalities of Hardy’s type involving monotonic functions on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} in different spaces Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(\mathbb {T})$$\end{document} and Lq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}( \mathbb {T})$$\end{document} when 0<p<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<q<\infty $$\end{document} and p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 1$$\end{document}. The main results will be proved by employing the reverse Hölder inequality, integration by parts, and the Fubini theorem on time scales. The main contribution in this paper is the new proof in the case when p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1$$\end{document}, which has not been considered before on time scales. Moreover, the results unify and extend continuous and discrete systems under one theory.
引用
收藏
相关论文
共 50 条
  • [31] ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Set, E.
    Ozdemir, M. E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 265 - 272
  • [32] α(x)-MONOTONIC FUNCTIONS AND THEIR INEQUALITIES
    Pecaric, Josip
    Smoljak, Ksenija
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (03): : 435 - 450
  • [33] SOME NEW CHARACTERIZATIONS OF THE CONVEX FUNCTIONS
    Marinescu, Dan Stefan
    Monea, Mihai
    Opincariu, Mihai
    Stroe, Marian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 349 - 356
  • [34] INEQUALITIES FOR SOME INTEGRALS INVOLVING MODIFIED BESSEL FUNCTIONS
    Gaunt, Robert E.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 2937 - 2951
  • [35] Some norm inequalities involving functions of two variables
    Singh, M
    Aujla, JS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (04): : 561 - 568
  • [36] Some operator inequalities involving operator monotone functions
    Jafarmanesh, Hosna
    Khosravi, Maryam
    Sheikhhosseini, Alemeh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [37] Some norm inequalities involving convex functions of operators
    Fadi Alrimawi
    Mohammad Al-Khlyleh
    Positivity, 2022, 26
  • [38] SOME INEQUALITIES INVOLVING A FRACTAL OPERATOR OF FUNCTIONS ON THE SPHERE
    Navascues, M. A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01): : 83 - 98
  • [39] Some norm inequalities involving convex functions of operators
    Alrimawi, Fadi
    Al-Khlyleh, Mohammad
    POSITIVITY, 2022, 26 (05)
  • [40] On some Pachpatte integral inequalities involving convex functions
    Kim, YH
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (10) : 164 - 167