Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions

被引:0
|
作者
Samir H. Saker
Ahmed I. Saied
Douglas R. Anderson
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Benha University,Department of Mathematics, Faculty of Science
[4] Concordia College,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2021年 / 20卷
关键词
Hardy’s type inequality; Monotonic functions; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 47B38; 39A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some new characterizations of weighted functions for dynamic inequalities of Hardy’s type involving monotonic functions on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} in different spaces Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(\mathbb {T})$$\end{document} and Lq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}( \mathbb {T})$$\end{document} when 0<p<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<q<\infty $$\end{document} and p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 1$$\end{document}. The main results will be proved by employing the reverse Hölder inequality, integration by parts, and the Fubini theorem on time scales. The main contribution in this paper is the new proof in the case when p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1$$\end{document}, which has not been considered before on time scales. Moreover, the results unify and extend continuous and discrete systems under one theory.
引用
收藏
相关论文
共 50 条
  • [41] INTEGRAL-INEQUALITIES AND SOME BOUNDARY PROPERTIES OF ORISPHERICALLY MONOTONIC FUNCTIONS
    KUFAREV, BP
    DOKLADY AKADEMII NAUK SSSR, 1986, 286 (03): : 539 - 542
  • [42] CHARACTERIZATIONS OF CONTINUOUS DISTRIBUTIONS THROUGH INEQUALITIES INVOLVING THE EXPECTED VALUES OF SELECTED FUNCTIONS
    Goodarzi, Faranak
    Amini, Mohammad
    Reza, Gholam
    Borzadaran, Mohtashami
    APPLICATIONS OF MATHEMATICS, 2017, 62 (05) : 493 - 507
  • [43] Characterizations of continuous distributions through inequalities involving the expected values of selected functions
    Faranak Goodarzi
    Mohammad Amini
    Gholam Reza Mohtashami Borzadaran
    Applications of Mathematics, 2017, 62 : 493 - 507
  • [44] Completely monotonic functions and inequalities associated to some, ratio of gamma function
    Mortici, Cristinel
    Cristea, Valentin Gabriel
    Lu, Dawei
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 240 : 168 - 174
  • [45] ON SOME INEQUALITIES WITH WEIGHTS
    丁夏畦
    罗佩珠
    Acta Mathematica Scientia, 1989, (04) : 427 - 436
  • [46] ON SOME INEQUALITIES WITH WEIGHTS
    DING, XX
    LUO, PZ
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (04) : 427 - 436
  • [47] SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS AND INEQUALITIES FOR MULTINOMIAL COEFFICIENTS AND MULTIVARIATE BETA FUNCTIONS
    Qi, Feng
    Niu, Da-Wei
    Lim, Dongkyu
    Guo, Bai-Ni
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (02) : 512 - 527
  • [48] SOME NEW OPIAL DYNAMIC INEQUALITIES WITH WEIGHTED FUNCTIONS ON TIME SCALES
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 1171 - 1187
  • [49] SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE q-GAMMA FUNCTION
    Gao, Peng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 451 - 460
  • [50] Some New Inequalities Involving Generalized Fractional Integral Operators for Several Class of Functions
    Set, Erhan
    Gozpinar, Abdurrahman
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833