Improved estimates for polynomial Roth type theorems in finite fields

被引:0
|
作者
Dong Dong
Xiaochun Li
Will Sawin
机构
[1] University of Maryland,Center for Scientific Computation and Mathematical Modeling
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
[3] Columbia University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, under certain conditions on the function pair ϕ1 and ϕ2, the bilinear average q−1∑y∈Fqf1(x+φ2(y))f2(x+φ2(y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q^{- 1}}\sum\nolimits_{y \in {\mathbb{F}_q}} {{f_1}\left({x + {\varphi _2}\left(y \right)} \right){f_2}\left({x + {\varphi _2}\left(y \right)} \right)} $$\end{document} along the curve (ϕ1, ϕ2) satisfies a certain decay estimate. As a consequence, Roth type theorems hold in the setting of finite fields. In particular, if φ1,φ2∈Fq[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi _1},{\varphi _2} \in {\mathbb{F}_q}\left[X \right]$$\end{document} with ϕ1(0) = ϕ2(0) = 0 are linearly independent polynomials, then for any A⊂Fq,|A|=δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset {\mathbb{F}_q},\left| A \right| = \delta q$$\end{document} with δ > cq−1/12, there are ≳ δ3q2 triplets x, x+ϕ1(y), x + ϕ2(y) ∈ A. This extends a recent result of Bourgain and Chang who initiated this type of problems, and strengthens the bound in a result of Peluse, who generalized Bourgain and Chang’s work. The proof uses discrete Fourier analysis and algebraic geometry.
引用
收藏
页码:689 / 705
页数:16
相关论文
共 50 条
  • [1] IMPROVED ESTIMATES FOR POLYNOMIAL ROTH TYPE THEOREMS IN FINITE FIELDS
    Dong, Dong
    Li, Xiaochun
    Sawin, Will
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 689 - 705
  • [2] Nonlinear Roth type theorems in finite fields
    Bourgain, J.
    Chang, M. -C.
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (02) : 853 - 867
  • [3] Nonlinear Roth type theorems in finite fields
    J. Bourgain
    M.-C. Chang
    Israel Journal of Mathematics, 2017, 221 : 853 - 867
  • [4] A POLYNOMIAL ROTH THEOREM FOR CORNERS IN FINITE FIELDS
    Han, Rui
    Lacey, Michael T.
    Yang, Fan
    MATHEMATIKA, 2021, 67 (04) : 885 - 896
  • [5] Roth-type theorems in finite groups
    Solymosi, Jozsef
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1454 - 1458
  • [6] Polynomial Roth Theorems on Sets of Fractional Dimensions
    Fraser, Robert
    Guo, Shaoming
    Pramanik, Malabika
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7809 - 7838
  • [7] On elementary estimates of arithmetic sums for polynomial rings over finite fields
    Andrade, J. C.
    Shamesaldeen, A.
    Summersby, C.
    JOURNAL OF NUMBER THEORY, 2019, 199 : 49 - 62
  • [8] Polynomial Szemeredi theorems for countable modules over integral domains and finite fields
    Bergelson, V
    Leibman, A
    McCutcheon, R
    JOURNAL D ANALYSE MATHEMATIQUE, 2005, 95 (1): : 243 - 296
  • [9] Polynomial Szemerédi theorems for countable modules over integral domains and finite fields
    V. Bergelson
    A. Leibman
    R. McCutcheon
    Journal d’Analyse Mathématique, 2005, 95 : 243 - 296
  • [10] Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields
    Covert, David
    Hart, Derrick
    Iosevich, Alex
    Koh, Doowon
    Rudnev, Misha
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 306 - 319