Polynomial Roth Theorems on Sets of Fractional Dimensions

被引:4
|
作者
Fraser, Robert [1 ]
Guo, Shaoming [2 ]
Pramanik, Malabika [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
TRILINEAR OSCILLATORY INTEGRALS; CONFIGURATIONS; CONSTRUCTION;
D O I
10.1093/imrn/rnaa377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E subset of R be a closed set of Hausdorff dimension alpha is an element of (0, 1). Let P : R -> R be a polynomial without a constant term whose degree is bigger than one. We prove that if E supports a probability measure satisfying certain dimension condition and Fourier decay condition, then E contains three points x, x + t, x + P(t) for some t > 0. Our result extends the one of Laba and Pramanik [11] to the polynomial setting, under the same assumption. It also gives an affirmative answer to a question in Henriot et al. [7].
引用
收藏
页码:7809 / 7838
页数:30
相关论文
共 50 条
  • [1] A Nonlinear Version of Roth’s Theorem on Sets of Fractional Dimensions
    Xiang Li
    Qianjun He
    Dunyan Yan
    Xingsong Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 913 - 937
  • [2] A Nonlinear Version of Roth's Theorem on Sets of Fractional Dimensions
    Li, Xiang
    He, Qianjun
    Yan, Dunyan
    Zhang, Xingsong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 913 - 937
  • [3] ROTH THEOREMS FOR SETS OF MATRICES
    GURALNICK, RM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 71 (NOV) : 113 - 117
  • [4] On sets of fractional dimensions
    Best, E
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1940, 36 : 152 - 159
  • [5] IRREDUCIBLE POLYNOMIAL SETS AND DENSITY THEOREMS
    CAR, M
    ACTA ARITHMETICA, 1984, 44 (04) : 323 - 342
  • [6] Improved estimates for polynomial Roth type theorems in finite fields
    Dong Dong
    Xiaochun Li
    Will Sawin
    Journal d'Analyse Mathématique, 2020, 141 : 689 - 705
  • [7] IMPROVED ESTIMATES FOR POLYNOMIAL ROTH TYPE THEOREMS IN FINITE FIELDS
    Dong, Dong
    Li, Xiaochun
    Sawin, Will
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 689 - 705
  • [8] On sets of fractional dimensions (II)
    Best, E
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 127 - 133
  • [9] On sets of fractional dimensions (III)
    Best, E
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1942, 47 : 436 - 454
  • [10] Hausdorff dimensions of sets related to Lüroth expansion
    Y. Gui
    W. Li
    Acta Mathematica Hungarica, 2016, 150 : 286 - 302