Improved estimates for polynomial Roth type theorems in finite fields

被引:0
|
作者
Dong Dong
Xiaochun Li
Will Sawin
机构
[1] University of Maryland,Center for Scientific Computation and Mathematical Modeling
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
[3] Columbia University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, under certain conditions on the function pair ϕ1 and ϕ2, the bilinear average q−1∑y∈Fqf1(x+φ2(y))f2(x+φ2(y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q^{- 1}}\sum\nolimits_{y \in {\mathbb{F}_q}} {{f_1}\left({x + {\varphi _2}\left(y \right)} \right){f_2}\left({x + {\varphi _2}\left(y \right)} \right)} $$\end{document} along the curve (ϕ1, ϕ2) satisfies a certain decay estimate. As a consequence, Roth type theorems hold in the setting of finite fields. In particular, if φ1,φ2∈Fq[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi _1},{\varphi _2} \in {\mathbb{F}_q}\left[X \right]$$\end{document} with ϕ1(0) = ϕ2(0) = 0 are linearly independent polynomials, then for any A⊂Fq,|A|=δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset {\mathbb{F}_q},\left| A \right| = \delta q$$\end{document} with δ > cq−1/12, there are ≳ δ3q2 triplets x, x+ϕ1(y), x + ϕ2(y) ∈ A. This extends a recent result of Bourgain and Chang who initiated this type of problems, and strengthens the bound in a result of Peluse, who generalized Bourgain and Chang’s work. The proof uses discrete Fourier analysis and algebraic geometry.
引用
收藏
页码:689 / 705
页数:16
相关论文
共 50 条
  • [31] Univariate polynomial factorization over finite fields
    Naudin, P
    Quitte, C
    THEORETICAL COMPUTER SCIENCE, 1998, 191 (1-2) : 1 - 36
  • [32] On the degrees of polynomial divisors over finite fields
    Weingartner, Andreas
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 161 (03) : 469 - 487
  • [33] Dynamics of polynomial maps over finite fields
    Oliveira, Jose Alves
    Martinez, F. E. Brochero
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1113 - 1125
  • [34] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [35] TRUE COMPLEXITY OF POLYNOMIAL PROGRESSIONS IN FINITE FIELDS
    Kuca, Borys
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (03) : 448 - 500
  • [36] On the Dispersions of the Polynomial Maps over Finite Fields
    Schauz, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [37] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [38] Unimodular polynomial matrices over finite fields
    Akansha Arora
    Samrith Ram
    Ayineedi Venkateswarlu
    Journal of Algebraic Combinatorics, 2021, 53 : 1299 - 1312
  • [39] Faster Polynomial Multiplication over Finite Fields
    Harvey, David
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF THE ACM, 2017, 63 (06)
  • [40] Complexity of polynomial multiplication over finite fields
    Kaminski, Michael
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 2 - 2