Improved estimates for polynomial Roth type theorems in finite fields

被引:0
|
作者
Dong Dong
Xiaochun Li
Will Sawin
机构
[1] University of Maryland,Center for Scientific Computation and Mathematical Modeling
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
[3] Columbia University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, under certain conditions on the function pair ϕ1 and ϕ2, the bilinear average q−1∑y∈Fqf1(x+φ2(y))f2(x+φ2(y))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q^{- 1}}\sum\nolimits_{y \in {\mathbb{F}_q}} {{f_1}\left({x + {\varphi _2}\left(y \right)} \right){f_2}\left({x + {\varphi _2}\left(y \right)} \right)} $$\end{document} along the curve (ϕ1, ϕ2) satisfies a certain decay estimate. As a consequence, Roth type theorems hold in the setting of finite fields. In particular, if φ1,φ2∈Fq[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi _1},{\varphi _2} \in {\mathbb{F}_q}\left[X \right]$$\end{document} with ϕ1(0) = ϕ2(0) = 0 are linearly independent polynomials, then for any A⊂Fq,|A|=δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset {\mathbb{F}_q},\left| A \right| = \delta q$$\end{document} with δ > cq−1/12, there are ≳ δ3q2 triplets x, x+ϕ1(y), x + ϕ2(y) ∈ A. This extends a recent result of Bourgain and Chang who initiated this type of problems, and strengthens the bound in a result of Peluse, who generalized Bourgain and Chang’s work. The proof uses discrete Fourier analysis and algebraic geometry.
引用
收藏
页码:689 / 705
页数:16
相关论文
共 50 条
  • [21] Estimates of character sums in finite fields
    Konyagin, S. V.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 503 - 515
  • [22] SEMIAMPLE BERTINI THEOREMS OVER FINITE FIELDS
    Erman, Daniel
    Wood, Melanie Matchett
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (01) : 1 - 38
  • [23] Estimates of character sums in finite fields
    S. V. Konyagin
    Mathematical Notes, 2010, 88 : 503 - 515
  • [24] BERTINI IRREDUCIBILITY THEOREMS OVER FINITE FIELDS
    Charles, Francois
    Poonen, Bjorn
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (01) : 81 - 94
  • [25] Unimodular polynomial matrices over finite fields
    Arora, Akansha
    Ram, Samrith
    Venkateswarlu, Ayineedi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1299 - 1312
  • [26] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898
  • [27] Polynomial equations for matrices over finite fields
    Hua, JZ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 59 - 64
  • [28] Dynamics of polynomial maps over finite fields
    José Alves Oliveira
    F. E. Brochero Martínez
    Designs, Codes and Cryptography, 2024, 92 : 1113 - 1125
  • [29] POLYNOMIAL VALUES IN AFFINE SUBSPACES OF FINITE FIELDS
    Ostafe, Alina
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 138 (01): : 49 - 81
  • [30] Polynomial values in small subgroups of finite fields
    Shparlinski, Igor E.
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1127 - 1136