On the polynomial Ramanujan sums over finite fields

被引:0
|
作者
Zhiyong Zheng
机构
[1] Beihang University,School of Mathematics and Systems Science
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Polynomial Ramanujan sums; Finite fields; Reciprocity formula; Orthogonality relation; Davenport–Hasse’s type formula; Primary 11T55; 11T24; Secondary 11L05;
D O I
暂无
中图分类号
学科分类号
摘要
The polynomial Ramanujan sum was first introduced by Carlitz (Duke Math J 14:1105–1120, 1947), and a generalized version by Cohen (Duke Math J 16:85–90, 1949). In this paper, we study the arithmetical and analytic properties of these sums, deriving various fundamental identities, such as Hölder formula, reciprocity formula, orthogonality relation, and Davenport–Hasse type formula. In particular, we show that the special Dirichlet series involving the polynomial Ramanujan sums are, indeed, the entire functions on the whole complex plane, and we also give a square mean values estimation. The main results of this paper are new appearance to us, which indicate the particularity of the polynomial Ramanujan sums.
引用
收藏
页码:863 / 898
页数:35
相关论文
共 50 条
  • [1] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898
  • [2] On the distribution of Ramanujan sums over number fields
    Sneha Chaubey
    Shivani Goel
    The Ramanujan Journal, 2023, 61 : 813 - 837
  • [3] On the distribution of Ramanujan sums over number fields
    Chaubey, Sneha
    Goel, Shivani
    RAMANUJAN JOURNAL, 2023, 61 (03): : 813 - 837
  • [4] On elementary estimates of arithmetic sums for polynomial rings over finite fields
    Andrade, J. C.
    Shamesaldeen, A.
    Summersby, C.
    JOURNAL OF NUMBER THEORY, 2019, 199 : 49 - 62
  • [5] Ramanujan graphs and exponential sums over function fields
    Sardari, Naser T.
    Zargar, Masoud
    JOURNAL OF NUMBER THEORY, 2020, 217 : 44 - 77
  • [6] POLYA-VINOGRADOV INEQUALITY FOR POLYNOMIAL CHARACTER SUMS OVER FINITE FIELDS
    Zheng, Zhiyong
    Hong, Ziwei
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 443 - 452
  • [7] SUMS OF TWO SQUARES IN SHORT INTERVALS IN POLYNOMIAL RINGS OVER FINITE FIELDS
    Bank, Efrat
    Bary-Soroker, Lior
    Fehm, Arno
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (04) : 1113 - 1131
  • [8] The average size of Ramanujan sums over quadratic number fields
    Zhai, Wenguang
    RAMANUJAN JOURNAL, 2021, 56 (03): : 953 - 969
  • [9] The average size of Ramanujan sums over quadratic number fields
    Werner Georg Nowak
    Archiv der Mathematik, 2012, 99 : 433 - 442
  • [10] The average size of Ramanujan sums over cubic number fields
    Jing Ma
    Huayan Sun
    Wenguang Zhai
    Periodica Mathematica Hungarica, 2023, 87 : 215 - 231