On the distribution of Ramanujan sums over number fields

被引:2
|
作者
Chaubey, Sneha [1 ]
Goel, Shivani [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
来源
RAMANUJAN JOURNAL | 2023年 / 61卷 / 03期
关键词
Ramanujan sums; Number fields; Perron formulas; Dedekind zeta function;
D O I
10.1007/s11139-023-00713-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a number field K, and integral ideals I and J in its number ring O-K, Nowak studied the asymptotic behavior of the average of Ramanujan sums CJ(I) over both ideals I and J. In this article, we extend this investigation by establishing asymptotic formulas for the second moment of averages of Ramanujan sums over quadratic and cubic number fields, thereby generalizing previous works of Chen, Kumchev, Robles, and Roy on moments of averages of Ramanujan sums over rationals. Additionally, using a special property of certain integral domains, we obtain second moment results for Ramanujan sums over some other number fields.
引用
收藏
页码:813 / 837
页数:25
相关论文
共 50 条
  • [1] On the distribution of Ramanujan sums over number fields
    Sneha Chaubey
    Shivani Goel
    The Ramanujan Journal, 2023, 61 : 813 - 837
  • [2] The average size of Ramanujan sums over quadratic number fields
    Zhai, Wenguang
    RAMANUJAN JOURNAL, 2021, 56 (03): : 953 - 969
  • [3] The average size of Ramanujan sums over quadratic number fields
    Werner Georg Nowak
    Archiv der Mathematik, 2012, 99 : 433 - 442
  • [4] The average size of Ramanujan sums over cubic number fields
    Jing Ma
    Huayan Sun
    Wenguang Zhai
    Periodica Mathematica Hungarica, 2023, 87 : 215 - 231
  • [5] The average size of Ramanujan sums over quadratic number fields
    Wenguang Zhai
    The Ramanujan Journal, 2021, 56 : 953 - 969
  • [6] The average size of Ramanujan sums over cubic number fields
    Ma, Jing
    Sun, Huayan
    Zhai, Wenguang
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (1) : 215 - 231
  • [7] The average size of Ramanujan sums over cubic number fields
    Ma, Jing
    Sun, Huayan
    Zhai, Wenguang
    arXiv, 2021,
  • [8] The average size of Ramanujan sums over quadratic number fields
    Nowak, Werner Georg
    ARCHIV DER MATHEMATIK, 2012, 99 (05) : 433 - 442
  • [9] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [10] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898