On the distribution of Ramanujan sums over number fields

被引:2
|
作者
Chaubey, Sneha [1 ]
Goel, Shivani [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
来源
RAMANUJAN JOURNAL | 2023年 / 61卷 / 03期
关键词
Ramanujan sums; Number fields; Perron formulas; Dedekind zeta function;
D O I
10.1007/s11139-023-00713-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a number field K, and integral ideals I and J in its number ring O-K, Nowak studied the asymptotic behavior of the average of Ramanujan sums CJ(I) over both ideals I and J. In this article, we extend this investigation by establishing asymptotic formulas for the second moment of averages of Ramanujan sums over quadratic and cubic number fields, thereby generalizing previous works of Chen, Kumchev, Robles, and Roy on moments of averages of Ramanujan sums over rationals. Additionally, using a special property of certain integral domains, we obtain second moment results for Ramanujan sums over some other number fields.
引用
收藏
页码:813 / 837
页数:25
相关论文
共 50 条
  • [21] On sums of Ramanujan sums
    Chan, T. H.
    Kumchev, A. V.
    ACTA ARITHMETICA, 2012, 152 (01) : 1 - 10
  • [22] Kloosterman sums on number fields
    Pacharoni, I
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (08) : 2653 - 2667
  • [23] On Poincare sums for number fields
    Ono, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (04) : 65 - 68
  • [24] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80
  • [25] RAMANUJAN’S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (03): : 69 - 80
  • [26] ON SUMS OF GENERALIZED RAMANUJAN SUMS
    Fujisawa, Yusuke
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (01): : 1 - 10
  • [27] On sums of generalized Ramanujan sums
    Yusuke Fujisawa
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 1 - 10
  • [28] The Sylvester Theorem and the Rogers-Ramanujan Identities over Totally Real Number Fields
    Jang, Se Wook
    Kim, Byeong Moon
    Kim, Kwang Hoon
    arXiv, 2023,
  • [29] Sums of products of Ramanujan sums
    László Tóth
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2012, 58 (1) : 183 - 197
  • [30] Sums of Kloosterman sums for real quadratic number fields
    Bruggeman, RW
    Miatello, RJ
    Pacharoni, I
    JOURNAL OF NUMBER THEORY, 2003, 99 (01) : 90 - 119