The average size of Ramanujan sums over cubic number fields

被引:1
|
作者
Ma, Jing [1 ]
Sun, Huayan [1 ]
Zhai, Wenguang [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramanujan sum; Cubic field; Exponential sum; FORMULAS;
D O I
10.1007/s10998-022-00507-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a cubic number field. In this paper, we study the Ramanujan sums c(J) (I) , where I and 9 are integral ideals in O-K. The asymptotic behaviour of sums of c(J) (I) over both I and 9 is investigated.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 50 条
  • [1] The average size of Ramanujan sums over cubic number fields
    Jing Ma
    Huayan Sun
    Wenguang Zhai
    Periodica Mathematica Hungarica, 2023, 87 : 215 - 231
  • [2] The average size of Ramanujan sums over cubic number fields
    Ma, Jing
    Sun, Huayan
    Zhai, Wenguang
    arXiv, 2021,
  • [3] The average size of Ramanujan sums over quadratic number fields
    Zhai, Wenguang
    RAMANUJAN JOURNAL, 2021, 56 (03): : 953 - 969
  • [4] The average size of Ramanujan sums over quadratic number fields
    Werner Georg Nowak
    Archiv der Mathematik, 2012, 99 : 433 - 442
  • [5] The average size of Ramanujan sums over quadratic number fields
    Wenguang Zhai
    The Ramanujan Journal, 2021, 56 : 953 - 969
  • [6] The average size of Ramanujan sums over quadratic number fields
    Nowak, Werner Georg
    ARCHIV DER MATHEMATIK, 2012, 99 (05) : 433 - 442
  • [7] On the distribution of Ramanujan sums over number fields
    Sneha Chaubey
    Shivani Goel
    The Ramanujan Journal, 2023, 61 : 813 - 837
  • [8] On the distribution of Ramanujan sums over number fields
    Chaubey, Sneha
    Goel, Shivani
    RAMANUJAN JOURNAL, 2023, 61 (03): : 813 - 837
  • [9] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [10] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898