The average size of Ramanujan sums over cubic number fields

被引:1
|
作者
Ma, Jing [1 ]
Sun, Huayan [1 ]
Zhai, Wenguang [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramanujan sum; Cubic field; Exponential sum; FORMULAS;
D O I
10.1007/s10998-022-00507-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a cubic number field. In this paper, we study the Ramanujan sums c(J) (I) , where I and 9 are integral ideals in O-K. The asymptotic behaviour of sums of c(J) (I) over both I and 9 is investigated.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 50 条
  • [31] On the cyclic torsion of elliptic curves over cubic number fields
    Wang, Jian
    JOURNAL OF NUMBER THEORY, 2018, 183 : 291 - 308
  • [32] The number of solutions of cubic diagonal equations over finite fields
    Hu, Shuangnian
    Feng, Rongquan
    AIMS MATHEMATICS, 2023, 8 (03): : 6375 - 6388
  • [33] Stark's conjecture over complex cubic number fields
    Dummit, DS
    Tangedal, BA
    Van Wamelen, PB
    MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1525 - 1546
  • [34] THE AVERAGE NUMBER OF SUBGROUPS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Perret-Gentil, Corentin
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (03): : 781 - 822
  • [35] The number of solutions of diagonal cubic equations over finite fields
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [36] On the number of zeros of diagonal cubic forms over finite fields
    Hong, Shaofang
    Zhu, Chaoxi
    FORUM MATHEMATICUM, 2021, 33 (03) : 697 - 708
  • [37] Kloosterman sums on number fields
    Pacharoni, I
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (08) : 2653 - 2667
  • [38] On Poincare sums for number fields
    Ono, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (04) : 65 - 68
  • [39] CUBIC FORMS OVER IMAGINARY QUADRATIC NUMBER FIELDS AND PAIRS OF RATIONAL CUBIC FORMS
    Bernert, Christian
    Hochfilzer, Leonhard
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (04) : 2549 - 2578
  • [40] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80